BCI datasets and algorithms

Related tags

Algorithmsbrainda
Overview

Brainda

Welcome!

First and foremost, Welcome!

Thank you for visiting the Brainda repository which was initially released at this repo and reorganized here. This project is meant to provide datasets and decoding algorithms for BCI research, using python, as a part of the MetaBCI project which aims to provide a python platform for BCI users to design paradigm, collect data, process signals, present feedbacks and drive robots.

This document is a hub to give you some information about the project. Jump straight to one of the sections below, or just scroll down to find out more.

What are we doing?

The problem

  • BCI datasets come in different formats and standards
  • It's tedious to figure out the details of the data
  • Lack of python implementations of modern decoding algorithms

If someone new to the BCI wants to do some interesting research, most of their time would be spent on preprocessing the data or reproducing the algorithm in the paper.

The solution

The Brainda will:

  • Allow users to load the data easily without knowing the details
  • Provide flexible hook functions to control the preprocessing flow
  • Provide the latest decoding algorithms

The goal of the Brainda is to make researchers focus on improving their own BCI algorithms without wasting too much time on preliminary preparations.

Features

  • Improvements to MOABB APIs

    • add hook functions to control the preprocessing flow more easily
    • use joblib to accelerate the data loading
    • add proxy options for network conneciton issues
    • add more information in the meta of data
    • other small changes
  • Supported Datasets

    • MI Datasets
      • AlexMI
      • BNCI2014001, BNCI2014004
      • PhysionetMI, PhysionetME
      • Cho2017
      • MunichMI
      • Schirrmeister2017
      • Weibo2014
      • Zhou2016
    • SSVEP Datasets
      • Nakanishi2015
      • Wang2016
      • BETA
  • Implemented BCI algorithms

    • Decomposition Methods
      • SPoC, CSP, MultiCSP and FBCSP
      • CCA, itCCA, MsCCA, ExtendCCA, ttCCA, MsetCCA, MsetCCA-R, TRCA, TRCA-R, SSCOR and TDCA
      • DSP
    • Manifold Learning
      • Basic Riemannian Geometry operations
      • Alignment methods
      • Riemann Procustes Analysis
    • Deep Learning
      • ShallowConvNet
      • EEGNet
      • ConvCA
      • GuneyNet
    • Transfer Learning
      • MEKT
      • LST

Installation

  1. Clone the repo
    git clone https://github.com/TBC-TJU/brainda.git
  2. Change to the project directory
    cd brainda
  3. Install all requirements
    pip install -r requirements.txt 
  4. Install brainda package with the editable mode
    pip install -e .

Usage

Data Loading

In basic case, we can load data with the recommended options from the dataset maker.

from brainda.datasets import AlexMI
from brainda.paradigms import MotorImagery

dataset = AlexMI() # declare the dataset
paradigm = MotorImagery(
    channels=None, 
    events=None,
    intervals=None,
    srate=None
) # declare the paradigm, use recommended Options

print(dataset) # see basic dataset information

# X,y are numpy array and meta is pandas dataFrame
X, y, meta = paradigm.get_data(
    dataset, 
    subjects=dataset.subjects, 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)
print(X.shape)
print(meta)

If you don't have the dataset yet, the program would automatically download a local copy, generally in your ~/mne_data folder. However, you can always download the dataset in advance and store it in your specific folder.

dataset.download_all(
    path='/your/datastore/folder', # save folder
    force_update=False, # re-download even if the data exist
    proxies=None, # add proxy if you need, the same as the Request package
    verbose=None
)

# If you encounter network connection issues, try this
# dataset.download_all(
#     path='/your/datastore/folder', # save folder
#     force_update=False, # re-download even if the data exist
#     proxies={
#         'http': 'socks5://user:[email protected]:port',
#         'https': 'socks5://user:[email protected]:port'
#     },
#     verbose=None
# )

You can also choose channels, events, intervals, srate, and subjects yourself.

paradigm = MotorImagery(
    channels=['C3', 'CZ', 'C4'], 
    events=['right_hand', 'feet'],
    intervals=[(0, 2)], # 2 seconds
    srate=128
)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[2, 4], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)
print(X.shape)
print(meta)

or use different intervals for events. In this case, X, y and meta should be returned in dict.

dataset = AlexMI()
paradigm = MotorImagery(
    channels=['C3', 'CZ', 'C4'], 
    events=['right_hand', 'feet'],
    intervals=[(0, 2), (0, 1)], # 2s for right_hand, 1s for feet
    srate=128
)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[2, 4], 
    return_concat=False, 
    n_jobs=None, 
    verbose=False)
print(X['right_hand'].shape, X['feet'].shape)

Preprocessing

Here is the flow of paradigm.get_data function:

brainda provides 3 hooks that enable you to control the preprocessing flow in paradigm.get_data. With these hooks, you can operate data just like MNE typical flow:

dataset = AlexMI()
paradigm = MotorImagery()

# add 6-30Hz bandpass filter in raw hook
def raw_hook(raw, caches):
    # do something with raw object
    raw.filter(6, 30, 
        l_trans_bandwidth=2, 
        h_trans_bandwidth=5, 
        phase='zero-double')
    caches['raw_stage'] = caches.get('raw_stage', -1) + 1
    return raw, caches

def epochs_hook(epochs, caches):
    # do something with epochs object
    print(epochs.event_id)
    caches['epoch_stage'] = caches.get('epoch_stage', -1) + 1
    return epochs, caches

def data_hook(X, y, meta, caches):
    # retrive caches from the last stage
    print("Raw stage:{},Epochs stage:{}".format(caches['raw_stage'], caches['epoch_stage']))
    # do something with X, y, and meta
    caches['data_stage'] = caches.get('data_stage', -1) + 1
    return X, y, meta, caches

paradigm.register_raw_hook(raw_hook)
paradigm.register_epochs_hook(epochs_hook)
paradigm.register_data_hook(data_hook)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[1], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)

If the dataset maker provides these hooks in the dataset, brainda would call these hooks implictly. But you can always replace them with the above code.

Machine Learning Pipeline

Now it's time to do some real BCI algorithms. Here is a demo of CSP for 2-class MI:

import numpy as np

from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline

from brainda.datasets import AlexMI
from brainda.paradigms import MotorImagery
from brainda.algorithms.utils.model_selection import (
    set_random_seeds,
    generate_kfold_indices, match_kfold_indices)
from brainda.algorithms.decomposition import CSP

dataset = AlexMI()
paradigm = MotorImagery(events=['right_hand', 'feet'])

# add 6-30Hz bandpass filter in raw hook
def raw_hook(raw, caches):
    # do something with raw object
    raw.filter(6, 30, l_trans_bandwidth=2, h_trans_bandwidth=5, phase='zero-double', verbose=False)
    return raw, caches

paradigm.register_raw_hook(raw_hook)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[3], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)

# 5-fold cross validation
set_random_seeds(38)
kfold = 5
indices = generate_kfold_indices(meta, kfold=kfold)

# CSP with SVC classifier
estimator = make_pipeline(*[
    CSP(n_components=4),
    SVC()
])

accs = []
for k in range(kfold):
    train_ind, validate_ind, test_ind = match_kfold_indices(k, meta, indices)
    # merge train and validate set
    train_ind = np.concatenate((train_ind, validate_ind))
    p_labels = estimator.fit(X[train_ind], y[train_ind]).predict(X[test_ind])
    accs.append(np.mean(p_labels==y[test_ind]))
print(np.mean(accs))

If everything is fine, you will get the accuracy about 0.75.

Who are we?

The MetaBCI project is carried out by researchers from

  • Academy of Medical Engineering and Translational Medicine, Tianjin University, China
  • Tianjin Brain Center, China

Dr.Lichao Xu is the main contributor to the Brainda repository.

What do we need?

You! In whatever way you can help.

We need expertise in programming, user experience, software sustainability, documentation and technical writing and project management.

We'd love your feedback along the way.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated. Especially welcome to submit BCI algorithms.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Email: [email protected]

Acknowledgements

causal-learn: Causal Discovery for Python

causal-learn: Causal Discovery for Python Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art ca

589 Dec 29, 2022
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem Abstract The Travelling Salesman Problem is a well known NP-Hard problem. Given

Gary Sun 55 Jun 15, 2022
HashDB is a community-sourced library of hashing algorithms used in malware.

HashDB HashDB is a community-sourced library of hashing algorithms used in malware. How To Use HashDB HashDB can be used as a stand alone hashing libr

OALabs 216 Jan 06, 2023
Benchmark for Robustness Tests of Control Alrogithms

A gym-like classical control benchmark for evaluating the robustnesses of control and reinforcement learning algorithms.

Kim Taekyung 4 Jan 18, 2022
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA)

SSA Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA) Requirements python =3.7 numpy pandas matplotlib pyyaml Command line usag

Anoop Lab 1 Jan 27, 2022
Sorting-Algorithms - All information about sorting algorithm you need and you can visualize the code tracer

Sorting-Algorithms - All information about sorting algorithm you need and you can visualize the code tracer

Ahmed Hossam 15 Oct 16, 2022
Genetic algorithm which evolves aoe2 DE ai scripts

AlphaScripter Use the power of genetic algorithms to evolve AI scripts for Age of Empires II : Definitive Edition. For now this package runs in AOC Us

6 Nov 04, 2022
A calculator to test numbers against the collatz conjecture

The Collatz Calculator This is an algorithm custom built by Kyle Dickey, used to test numbers against the simple rules of the Collatz Conjecture. Get

Kyle Dickey 2 Jun 14, 2022
Python Sorted Container Types: Sorted List, Sorted Dict, and Sorted Set

Python Sorted Containers Sorted Containers is an Apache2 licensed sorted collections library, written in pure-Python, and fast as C-extensions. Python

Grant Jenks 2.8k Jan 04, 2023
Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:

Cutting Stock Problem Cutting Stock Problem (CSP) deals with planning the cutting of items (rods / sheets) from given stock items (which are usually o

Emad Ehsan 87 Dec 31, 2022
A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

8QueensGenetic A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD. The project uses the Kivy cross-p

Ahmed Gad 16 Nov 13, 2022
A Python description of the Kinematic Bicycle Model with an animated example.

Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li

Winston H. 36 Dec 23, 2022
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021
A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

0 Oct 21, 2022
A simple python application to visualize sorting algorithms.

Visualize sorting algorithms A simple python application to visualize sorting algorithms. Sort Algorithms Name Function Name O( ) Bubble Sort bubble_s

Duc Tran 3 Apr 01, 2022
Dynamic Programming-Join Optimization Algorithm

DP-JOA Join optimization is the process of optimizing the joining, or combining, of two or more tables in a database. Here is a simple join optimizati

Haoze Zhou 3 Feb 03, 2022
sudoku solver using CSP forward-tracking algorithms.

Sudoku sudoku solver using CSP forward-tracking algorithms. Description Sudoku is a logic-based game that consists of 9 3x3 grids that create one larg

Cindy 0 Dec 27, 2021
zoofs is a Python library for performing feature selection using an variety of nature inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics based to Evolutionary. It's easy to use ,flexible and powerful tool to reduce your feature size.

zoofs is a Python library for performing feature selection using a variety of nature-inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics-based to Evolutionary. It's e

Jaswinder Singh 168 Dec 30, 2022