[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Overview

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training" by Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen.
This repository contains an implementation of the attacks (P1~P5) and the defense (adversarial training) in the paper.

Requirements

Our code relies on PyTorch, which will be automatically installed when you follow the instructions below.

conda create -n delusion python=3.8
conda activate delusion
pip install -r requirements.txt

Running Experiments

  1. Pre-train a standard model on CIFAR-10 (the dataset will be automatically download).
python main.py --train_loss ST
  1. Generate perturbed training data.
python poison.py --poison_type P1
python poison.py --poison_type P2
python poison.py --poison_type P3
python poison.py --poison_type P4
python poison.py --poison_type P5
  1. Visualize the perturbed training data (optional).
tensorboard --logdir ./results
  1. Standard training on the perturbed data.
python main.py --train_loss ST --poison_type P1
python main.py --train_loss ST --poison_type P2
python main.py --train_loss ST --poison_type P3
python main.py --train_loss ST --poison_type P4
python main.py --train_loss ST --poison_type P5
  1. Adversarial training on the perturbed data.
python main.py --train_loss AT --poison_type P1
python main.py --train_loss AT --poison_type P2
python main.py --train_loss AT --poison_type P3
python main.py --train_loss AT --poison_type P4
python main.py --train_loss AT --poison_type P5

Results

Figure 1: An illustration of delusive attacks and adversarial training. Left: Random samples from the CIFAR-10 training set: the original training set D and the perturbed training set DP5 generated using the P5 attack. Right: Natural accuracy evaluated on the CIFAR-10 test set for models trained with: i) standard training on D; ii) adversarial training on D; iii) standard training on DP5; iv) adversarial training on DP5. While standard training on DP5 incurs poor generalization performance on D, adversarial training can help a lot.

 

Table 1: Below we report mean and standard deviation of the test accuracy for the CIFAR-10 dataset. As we can see, the performance deviations of the defense (i.e., adversarial training) are very small (< 0.50%), which hardly effect the results. In contrast, the results of standard training are relatively unstable.

Training method \ Training data P1 P2 P3 P4 P5
Standard training 37.87±0.94 74.24±1.32 15.14±2.10 23.69±2.98 11.76±0.72
Adversarial training 86.59±0.30 89.50±0.21 88.12±0.39 88.15±0.15 88.12±0.43

 

Key takeaways: Our theoretical justifications in the paper, along with the empirical results, suggest that adversarial training is a principled and promising defense against delusive attacks.

Citing this work

@inproceedings{tao2021better,
    title={Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training},
    author={Tao, Lue and Feng, Lei and Yi, Jinfeng and Huang, Sheng-Jun and Chen, Songcan},
    booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
    year={2021}
}
Owner
Lue Tao
Turning Alchemy into Science.
Lue Tao
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023