[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Overview

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training" by Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen.
This repository contains an implementation of the attacks (P1~P5) and the defense (adversarial training) in the paper.

Requirements

Our code relies on PyTorch, which will be automatically installed when you follow the instructions below.

conda create -n delusion python=3.8
conda activate delusion
pip install -r requirements.txt

Running Experiments

  1. Pre-train a standard model on CIFAR-10 (the dataset will be automatically download).
python main.py --train_loss ST
  1. Generate perturbed training data.
python poison.py --poison_type P1
python poison.py --poison_type P2
python poison.py --poison_type P3
python poison.py --poison_type P4
python poison.py --poison_type P5
  1. Visualize the perturbed training data (optional).
tensorboard --logdir ./results
  1. Standard training on the perturbed data.
python main.py --train_loss ST --poison_type P1
python main.py --train_loss ST --poison_type P2
python main.py --train_loss ST --poison_type P3
python main.py --train_loss ST --poison_type P4
python main.py --train_loss ST --poison_type P5
  1. Adversarial training on the perturbed data.
python main.py --train_loss AT --poison_type P1
python main.py --train_loss AT --poison_type P2
python main.py --train_loss AT --poison_type P3
python main.py --train_loss AT --poison_type P4
python main.py --train_loss AT --poison_type P5

Results

Figure 1: An illustration of delusive attacks and adversarial training. Left: Random samples from the CIFAR-10 training set: the original training set D and the perturbed training set DP5 generated using the P5 attack. Right: Natural accuracy evaluated on the CIFAR-10 test set for models trained with: i) standard training on D; ii) adversarial training on D; iii) standard training on DP5; iv) adversarial training on DP5. While standard training on DP5 incurs poor generalization performance on D, adversarial training can help a lot.

 

Table 1: Below we report mean and standard deviation of the test accuracy for the CIFAR-10 dataset. As we can see, the performance deviations of the defense (i.e., adversarial training) are very small (< 0.50%), which hardly effect the results. In contrast, the results of standard training are relatively unstable.

Training method \ Training data P1 P2 P3 P4 P5
Standard training 37.87±0.94 74.24±1.32 15.14±2.10 23.69±2.98 11.76±0.72
Adversarial training 86.59±0.30 89.50±0.21 88.12±0.39 88.15±0.15 88.12±0.43

 

Key takeaways: Our theoretical justifications in the paper, along with the empirical results, suggest that adversarial training is a principled and promising defense against delusive attacks.

Citing this work

@inproceedings{tao2021better,
    title={Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training},
    author={Tao, Lue and Feng, Lei and Yi, Jinfeng and Huang, Sheng-Jun and Chen, Songcan},
    booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
    year={2021}
}
Owner
Lue Tao
Turning Alchemy into Science.
Lue Tao
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022