Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

Related tags

Deep LearningCaGCN
Overview

CaGCN

This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration".

Paper Link: https://arxiv.org/abs/2109.14285

Environment

  • python == 3.8.8
  • pytorch == 1.8.1
  • dgl -cuda11.1 == 0.6.1
  • networkx == 2.5
  • numpy == 1.20.2

GPU: GeForce RTX 2080 Ti

CPU: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

Confidence Calibration

CaGCN

python CaGCN.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
  • dataset: including [Cora, Citeseer, Pubmed], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3

For CoraFull,

python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
  • labelrate: including [20, 40, 60], required.

Uncalibrated model

python train_others.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 
python train_others.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --stage 1 --dropout 0.6 --lr 0.005
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1
python train_others.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --stage 1 --dropout 0.6 --lr 0.005

Temperature scaling & Matring Scaling

python train_others.py --model GCN --scaling_method method --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method method --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50
  • method: including [TS, MS], required.
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --scaling_method TS --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method TS --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50

Self-Training

GCN L/C=20

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 20 --stage 5 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.9
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 20 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.85

GCN L/C=40

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.85
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.99

GCN L/C=60

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 60 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 60 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 60 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.6
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 60 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.9

GAT L/C=20

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 20 --dropout 0.6 --lr 0.005 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.7
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 20 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 20 --dropout 0.6 --lr 0.005 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=40

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 40 --dropout 0.6 --lr 0.005 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.9
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 40 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=60

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 60 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 60 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.85 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

More Parameters

For more parameters of baselines, please refer to the Parameter.md

Contact

If you have any questions, please feel free to contact me with [email protected]

A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022