Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Overview

Deep Image Search - AI-Based Image Search Engine

Brain+Machine

Deep Image Search is an AI-based image search engine that includes deep transfer learning features Extraction and tree-based vectorized search

Generic badge Generic badge Generic badge Generic badge Generic badgeGeneric badge

Brain+Machine Creators

Nilesh Verma

Features

  • Faster Search O(logN) Complexity.
  • High Accurate Output Result.
  • Best for Implementing on python based web application or APIs.
  • Best implementation for College students and freshers for project creation.
  • Applications are Images based E-commerce recommendation, Social media and other image-based platforms that want to implement image recommendation and search.

Installation

This library is compatible with both windows and Linux system you can just use PIP command to install this library on your system:

pip install DeepImageSearch

If you are facing any VS C++ 14 related issue in windows during installation, kindly refer to following solution: Pip error: Microsoft Visual C++ 14.0 is required

How To Use?

We have provided the Demo folder under the GitHub repository, you can find the example in both .py and .ipynb file. Following are the ideal flow of the code:

1. Importing the Important Classes

There are three important classes you need to load LoadData - for data loading, Index - for indexing the images to database/folder, SearchImage - For searching and Plotting the images

# Importing the proper classes
from DeepImageSearch import Index,LoadData,SearchImage

2. Loading the Images Data

For loading the images data we need to use the LoadData object, from there we can import images from the CSV file and Single/Multiple Folders.

# load the Images from the Folder (You can also import data from multiple folders in python list type)
image_list = LoadData().from_folder(['images','wiki-images'])
# Load data from CSV file
image_list = LoadData().from_csv(csv_file_path='your_csv_file.csv',images_column_name='column_name)

3. Indexing and Saving The File in Local Folder

For faster retrieval we are using tree-based indexing techniques for Images features, So for that, we need to store meta-information on the local path [meta-data-files/] folder.

# For Faster Serching we need to index Data first, After Indexing all the meta data stored on the local path
Index(image_list).Start()

3. Searching

Searching operation is performed by the following method:

# for searching, you need to give the image path and the number of the similar image you want
SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)

you can also plot some similar images for viewing purpose by following the code method:

# If you want to plot similar images you can use this method, It will plot 16 most similar images from the data index
SearchImage().plot_similar_images(image_path = image_list[0])

Complete Code

# Importing the proper classes
from DeepImageSearch import Index,LoadData,SearchImage
# load the Images from the Folder (You can also import data from multiple folder in python list type)
image_list = LoadData().from_folder(['images','wiki-images'])
# For Faster Serching we need to index Data first, After Indexing all the meta data stored on the local path
Index(image_list).Start()
# for searching you need to give the image path and the number of similar image you want
SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)
# If you want to plot similar images the you can use this method, It will plot 16 most similar images from the data index
SearchImage().plot_similar_images(image_path = image_list[0])

License

MIT License

Copyright (c) 2021 Nilesh Verma

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

More cool features will be added in future. Feel free to give suggestions, report bugs and contribute.

You might also like...
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

Comments
  • Similar images

    Similar images

    The function to plot similar images plot 16 images, how do we know which image is related to or similar to the which image according to the algorithm?

    I mean like it should say these two are similar and the other two are similar to each other, no?

    opened by amrrs 3
  • TypeError: show() takes 1 positional argument but 2 were given

    TypeError: show() takes 1 positional argument but 2 were given

    Classification.py:

    from DeepImageSearch import Index, LoadData, SearchImage

    folders = [] folders.append("monos_segmented") image_list = LoadData().from_folder(folders)

    print (image_list)

    Index(image_list).Start()

    SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)

    SearchImage().plot_similar_images(image_path = image_list[0])

    Running...

    Traceback (most recent call last): File "Classification.py", line 13, in SearchImage().plot_similar_images(image_path = image_list[0]) File "/home/mike/.local/lib/python3.8/site-packages/DeepImageSearch/DeepImageSearch.py", line 132, in plot_similar_images plt.show(fig) File "/home/mike/.local/lib/python3.8/site-packages/matplotlib/pyplot.py", line 378, in show return _backend_mod.show(*args, **kwargs) TypeError: show() takes 1 positional argument but 2 were given

    opened by mikedorin 1
  • Single thread.

    Single thread.

    Hello,

    What i want to ask is, cant we make extracting features parallel? I'm using 3060 Ti and it seems a little bit slow for this GPU.

    Or am i wrong?

    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3070/242451 [02:25<3:08:09, 21.20it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step                                                                                                                    | 3073/242451 [02:25<3:07:27, 21.28it/s]
    1/1 [==============================] - 0s 15ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3076/242451 [02:25<3:07:21, 21.29it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3079/242451 [02:25<3:06:30, 21.39it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3082/242451 [02:26<3:07:04, 21.33it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3085/242451 [02:26<3:08:38, 21.15it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3088/242451 [02:26<3:09:21, 21.07it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 15ms/step                                                                                                                    | 3091/242451 [02:26<3:09:04, 21.10it/s]
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step                                                                                                                    | 3094/242451 [02:26<3:11:12, 20.86it/s]
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step
    

    Best regards.

    opened by ucyildirim 0
  • Problems with TensorFlow

    Problems with TensorFlow

    Hello,

    when trying to install DeepImageSearch on a Windows machine I got this:

    ERROR: Cannot install deepimagesearch==1.0, deepimagesearch==1.1, deepimagesearch==1.2, deepimagesearch==1.3 and deepimagesearch==1.4 because these package versions have conflicting dependencies.
    
    The conflict is caused by:
        deepimagesearch 1.4 depends on tensorflow
        deepimagesearch 1.3 depends on tensorflow
        deepimagesearch 1.2 depends on tensorflow
        deepimagesearch 1.1 depends on tensorflow
        deepimagesearch 1.0 depends on tensorflow`
    

    I tried to install it like stated here: https://stackoverflow.com/questions/69751318/i-had-trouble-installing-python-deepimagesearch-library but also same error as mentioned there by using this.

    ERROR: Could not find a version that satisfies the requirement tensorflow==2.3.2 (from versions: none)
    ERROR: No matching distribution found for tensorflow==2.3.
    

    Digging into TensorFlow itself, it seems that it is not running on windows properly anymore beginning from version 2.11 - that would not matter, if the version required by your library would still be available

    Using Windows 10 with Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)] on win32

    Installing https://pypi.org/project/tensorflow-intel/ and changing requirements in your library did not help either.

    So, what else I can do ?

    Thanks in advance for any help !

    opened by Creat1veM1nd 6
Owner
Data Science Enthusiast & Digital Influencer
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Alex Pashevich 62 Dec 24, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023