Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

Overview

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

High-Fidelity GAN Inversion for Image Attribute Editing

Update: We released the inference code and the pre-trained model on Oct. 31. The training code is coming soon.

paper | project website | demo video

Introduction

We present a novel high-fidelity GAN inversion framework that enables attribute editing with image-specific details well-preserved (e.g., background, appearance and illumination).

To Do

  • Release the inference code
  • Release the pretrained model
  • Release the training code (upon approval)

Set up

Installation

git clone https://github.com/Tengfei-Wang/HFGI.git
cd HFGI

Environment

The environment can be simply set up by Anaconda (only tested for inference):

conda create -n HFGI python=3.7
conda activate HFGI
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install matplotlib
conda install ninja
conda install -c 3dhubs gcc-5

Or, you can also set up the environment from the provided environment.yml:

conda env create -f environment.yml

Quick Start

Pretrained Models

Please download our pre-trained model and put it in ./checkpoint.

Model Description
Face Editing Trained on FFHQ.

Prepare Images

We put some images from CelebA-HQ in ./test_imgs, and you can quickly try them (and other images from CelebA-HQ or FFHQ).
For customized images, it is encouraged to first pre-process (align & crop) them, and then edit with our model. See FFHQ for alignment details.

Inference

Modify inference.sh according to the follwing instructions, and run:
(It is possibly slow for the first-time running.)

bash inference.sh
Args Description
--images_dir the path of images.
--n_sample number of images that you want to infer.
--edit_attribute We provide options of 'inversion', 'age', 'smile', 'eyes', 'lip' and 'beard' in the script.
--edit_degree control the degree of editing (works for 'age' and 'smile').

Training

Coming soon

Video Editing

The source videos and edited results in our paper can be found in this link.
For video editing, we first pre-process (align & crop) each frame, and then perform editing with the pre-trained model.

More Results

Citation

If you find this work useful for your research, please cite:

@article{wang2021HFGI,
      author = {Tengfei Wang and Yong Zhang and Yanbo Fan and Jue Wang and Qifeng Chen},
      title = {High-Fidelity GAN Inversion for Image Attribute Editing}, 
      journal = {arxiv:2109.06590},  
      year = {2021}
}
Owner
Tengfei Wang
Ph.D. candidate @ HKUST / Computer Vision
Tengfei Wang
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022