Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Overview

Monk - A computer vision toolkit for everyone Tweet

Version Build_Status


Why use Monk

  • Issue: Want to begin learning computer vision

    • Solution: Start with Monk's hands-on study roadmap tutorials
  • Issue: Multiple libraries hence multiple syntaxes to learn

    • Solution: Monk's one syntax to rule them all - pytorch, keras, mxnet, etc
  • Issue: Tough to keep track of all the trial projects while participating in a deep learning competition

    • Solution: Use monk's project management and work on multiple prototyping experiments
  • Issue: Tough to set hyper-parameters while training a classifier

    • Solution: Try out hyper-parameter analyser to find the right fit
  • Issue: Looking for a library to build quick solutions for your customer

    • Solution: Train, Infer and deploy with monk's low-code syntax


Create real-world Image Classification applications

Medical Domain Fashion Domain Autonomous Vehicles Domain
Agriculture Domain Wildlife Domain Retail Domain
Satellite Domain Healthcare Domain Activity Analysis Domain

...... For more check out the Application Model Zoo!!!!



How does Monk make image classification easy

  • Write less code and create end to end applications.
  • Learn only one syntax and create applications using any deep learning library - pytorch, mxnet, keras, tensorflow, etc
  • Manage your entire project easily with multiple experiments


For whom this library is built

  • Students
    • Seamlessly learn computer vision using our comprehensive study roadmaps
  • Researchers and Developers
    • Create and Manage multiple deep learning projects
  • Competiton participants (Kaggle, Codalab, Hackerearth, AiCrowd, etc)
    • Expedite the prototyping process and jumpstart with a higher rank


Table of Contents




Sample Showcase - Quick Mode

Create an image classifier.

#Create an experiment
ptf.Prototype("sample-project-1", "sample-experiment-1")

#Load Data
ptf.Default(dataset_path="sample_dataset/", 
             model_name="resnet18", 
             num_epochs=2)
# Train
ptf.Train()

Inference

predictions = ptf.Infer(img_name="sample.png", return_raw=True);

Compare Experiments

#Create comparison project
ctf.Comparison("Sample-Comparison-1");

#Add all your experiments
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
   
# Generate statistics
ctf.Generate_Statistics();



Installation

  • CUDA 9.0          : pip install -U monk-cuda90
  • CUDA 9.0          : pip install -U monk-cuda92
  • CUDA 10.0        : pip install -U monk-cuda100
  • CUDA 10.1        : pip install -U monk-cuda101
  • CUDA 10.2        : pip install -U monk-cuda102
  • CPU (+Mac-OS) : pip install -U monk-cpu
  • Google Colab   : pip install -U monk-colab
  • Kaggle              : pip install -U monk-kaggle

For More Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

General

  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines
  • Python pip packaging support

Backend Support

  • Tensorflow 2.0 provision support with v1
  • Tensorflow 2.0 complete
  • Chainer

External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions


Connect with the project contributors



Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Owner
Tessellate Imaging
Computer Vision and Deep Learning Consultance and Development
Tessellate Imaging
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022