MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

Related tags

Deep Learningmqbench
Overview

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

We propose a benchmark to evaluate different quantization algorithms on various settings. MQBench is a first attempt to evaluate, analyze, and benchmark the reproducibility and deployability for model quantization algorithms. We choose multiple different platforms for real-world deployments, including CPU, GPU, ASIC, DSP, and evaluate extensive state-of-the-art quantization algorithms under a unified training pipeline. MQBench acts like a bridge to connect the algorithm and the hardware. We conduct a comprehensive analysis and find considerable intuitive or counter-intuitive insights.

Table of Contents

Highlighted Features

Installation

These instructions will help get MQBench up.

  1. Clone MQBench.

  2. (Optionally) Create a Python virtual environment.

  3. Install the MQBench-required packages

    $ pip install -r requirements.txt

    Notes: MQBench uses Pytorch-1.8, our quantized model is based on the new torch.fx tracing techniques.

  4. MQBench use the Pytorch distributed data-parallel training with nccl backend (see details here), please make sure your machine can initailize that distributed learning environment.

How to Reproduce MQBench

We provide the running scripts run.sh and configuration file config.yaml of all experiments in MQBench.

To reproduce LSQ on ResNet-18,

  1. enter the directory

    $ cd PATH-TO-PROJECT/qbench_zoo
    $ cd lsq_experiments/resnet18_4bit_academic
    
  2. run script

    $ sh run.sh
    

    Note that run.sh contain some commands that may not be found, the core running command is

    PYTHONPATH=$PYTHONPATH:../../..
    python -u -m prototype.solver.cls_quant_solver --config config.yaml

How to self-implement a quantization algorithm

All our quantization algorithms are implemented in prototype/quantization/

To implementa a new algorithm, you need to add you quantizer into this directory.

All quantizer are inheritant from QuantizeBase class. Each QuantizedBase will have an observer class which is used to estimate/update the quantization range. The observer design is inspired from the Pytorch-1.8 repo. Intializing a QuantizeBase class will also initialize a Observer class.

The parameters contained for QuantizeBase and Observer include:

  1. quant_min, quant_max, which specify the $N_{min}, N_{max}$ for rounding boundaries.
  2. qshcme, which can be torch.per_tensor_symmetric, torch.per_channel_symmetric, torch.per_tensor_affine, and torch.per_channel_affine. This is often determined by the hardware setup.
  3. ch_axis, which is the dimension of channel-wise quantization. -1 is for per-tensor quantization. Typically for nn.Conv2d and nn.Linear module, the ch_axis should be 0.
  4. ada_sign, which can adaptively choose the signness. ada_sign should be enabled for academic setting only.
  5. pot_scale, which is used to determine the powers-of-two scale parameters.

Note: each specified quantizer may have its own unique parameters, see example of LSQ below.

Example Implementation of LSQ:

  1. For initialization, we add new parameters for storing the scale, zero_point:

    self.use_grad_scaling = use_grad_scaling
    self.scale = Parameter(torch.tensor([scale]))
    self.zero_point = Parameter(torch.tensor([zero_point]))
  2. The major implementation is the forward function, which should contain several cases:

    1. In case of ada_sign=True, the quantization range should be adjusted.

      if self.ada_sign and X.min() >= 0:
        	self.quant_max = self.activation_post_process.quant_max = 2 ** self.bitwidth - 1
        	self.quant_min = self.activation_post_process.quant_min = 0
        	self.activation_post_process.adjust_sign = True
    2. In case of symmetric quantization, the zero point should set to 0.

      self.zero_point.data.zero_()
    3. In case of powers-of-two scale, the scale should be quantized by:

      def pot_quantization(tensor: torch.Tensor):
          log2t = torch.log2(tensor)
          log2t = (torch.round(log2t)-log2t).detach() + log2t
          return 2 ** log2t
          
      scale = pot_quantization(self.scale)
    4. Implement both per-channel and per-tensor quantization.

After adding you quantizer...

The next step is to register the quantizer in prototype/quantization/qconfig.py

Import your quantizer and then add it to get_qconfig function, and parse necessary arguments.

The final step is to override a config.yaml file:

qparams:
    w_method: lsq
    a_method: lsq
    bit: 4

backend: academic
bnfold: 4

By replacing the w_method, a_method, you can run your implementation.

Note: the rest of the config file should not be modified in order to keep a unified training setting.

How to self-implement a hardware configuration

Adding a new setting in hardware is much simpler that algorithms. To do this, we can add another condition in the if-else selection. For example, adding a new hardware TFLite Micro:

        elif backend == "tflitemicro":
            backend_params = dict(ada_sign=False, symmetry=True, per_channel=False, pot_scale=True)
        ...

    model_qconfig = get_qconfig(**self.qparams, **backend_params)
    model = quantize_fx.prepare_qat_fx(model, {"": model_qconfig}, foldbn_config)

Submitting Your Results to MQBench

You can submit your implementation to MQBench by submmitting a merge request to this repo. The implementation of new algorithms and the running scripts, log file are needed for evalutation.

License

This project is under Apache 2.0 License.

Comments
  • Deploy之前想保存量化的pth模型,torch.save失败

    Deploy之前想保存量化的pth模型,torch.save失败

    image

    File "/opt/conda/lib/python3.8/site-packages/torch/serialization.py", line 379, in save _save(obj, opened_zipfile, pickle_module, pickle_protocol) File "/opt/conda/lib/python3.8/site-packages/torch/serialization.py", line 484, in _save pickler.dump(obj) AttributeError: Can't pickle local object 'ObserverBase.__init__.<locals>.PerChannelLoadHook'

    opened by wangshankun 13
  • 基于最新mqbench对yolox进行量化,选择backbend=tengine_u8时报错:AttributeError: 'dict' object has no attribute 'detach'

    基于最新mqbench对yolox进行量化,选择backbend=tengine_u8时报错:AttributeError: 'dict' object has no attribute 'detach'

    使用UP框架基于最新mqbench对yolox进行QAT训练,选择backbend=tengine_u8 时报错:AttributeError: 'dict' object has no attribute 'detach'

    以下是使用的QAT配置文件:

    num_classes: &num_classes 13
    runtime:
      aligned: true
        # async_norm: True
      special_bn_init: true
      task_names: quant_det
      runner:
        type: quant
    
    quant:
      quant_type: qat
      deploy_backend: Tengine_u8
      cali_batch_size: 900
      prepare_args:
        extra_qconfig_dict:
          w_observer: MinMaxObserver
          a_observer: EMAMinMaxObserver
          w_fakequantize: FixedFakeQuantize
          a_fakequantize: FixedFakeQuantize
        leaf_module: [Space2Depth, FrozenBatchNorm2d]
        extra_quantizer_dict:
          additional_module_type: [ConvFreezebn2d, ConvFreezebnReLU2d]
    
    
    mixup:
      type: yolox_mixup_cv2
      kwargs:
        extra_input: true
        input_size: [640, 640]
        mixup_scale: [0.8, 1.6]
        fill_color: 0
    
    mosaic:
      type: mosaic
      kwargs:
        extra_input: true
        tar_size: 640
        fill_color: 0
    
    random_perspective:
      type: random_perspective_yolox
      kwargs:
        degrees: 10.0 # 0.0
        translate: 0.1
        scale: [0.1, 2.0] # 0.5
        shear: 2.0 # 0.0
        perspective: 0.0
        fill_color: 0  # 0
        border: [-320, -320]
    
    augment_hsv:
      type: augment_hsv
      kwargs:
        hgain: 0.015
        sgain: 0.7
        vgain: 0.4
        color_mode: BGR
    
    flip:
      type: flip
      kwargs:
        flip_p: 0.5
    
    to_tensor: &to_tensor
      type: custom_to_tensor
    
    train_resize: &train_resize
      type: keep_ar_resize_max
      kwargs:
        max_size: 640
        random_size: [15, 25]
        scale_step: 32
        padding_type: left_top
        padding_val: 0
    
    test_resize: &test_resize
      type: keep_ar_resize_max
      kwargs:
        max_size: 640
        padding_type: left_top
        padding_val: 0
    
    dataset:
      train:
        dataset:
          type: coco
          kwargs:
            meta_file: train.json
            image_reader:
              type: fs_opencv
              kwargs:
                image_dir: &img_root /images/
                color_mode: BGR
            transformer: [*train_resize, *to_tensor]
        batch_sampler:
          type: base
          kwargs:
            sampler:
              type: dist
              kwargs: {}
            batch_size: 4
      test:
        dataset:
          type: coco
          kwargs:
            meta_file: &gt_file val.json
            image_reader:
              type: fs_opencv
              kwargs:
                image_dir: *img_root
                color_mode: BGR
            transformer: [*test_resize, *to_tensor]
            evaluator:
              type: COCO
              kwargs:
                gt_file: *gt_file
                iou_types: [bbox]
        batch_sampler:
          type: base
          kwargs:
            sampler:
              type: dist
              kwargs: {}
            batch_size: 4
      dataloader:
        type: base
        kwargs:
          num_workers: 4
          alignment: 32
          worker_init: true
          pad_type: batch_pad
    
    trainer: # Required.
      max_epoch: &max_epoch 6             # total epochs for the training
      save_freq: 1
      test_freq: 1
      only_save_latest: false
      optimizer:                 # optimizer = SGD(params,lr=0.01,momentum=0.937,weight_decay=0.0005)
        register_type: yolov5
        type: SGD
        kwargs:
          lr: 0.0000003125
          momentum: 0.9
          nesterov: true
          weight_decay: 0.0      # weight_decay = 0.0005 * batch_szie / 64
      lr_scheduler:              # lr_scheduler = MultStepLR(optimizer, milestones=[9,14],gamma=0.1)
        warmup_epochs: 0        # set to be 0 to disable warmup. When warmup,  target_lr = init_lr * total_batch_size
        warmup_type: linear
        warmup_ratio: 0.001
        type: MultiStepLR
        kwargs:
          milestones: [2, 4]     # epochs to decay lr
          gamma: 0.1             # decay rate
    
    saver:
      save_dir: checkpoints/yolox_s_ret_a1_comloc_quant_tengine
      results_dir: results_dir/yolox_s_ret_a1_comloc_quant_tengine
      resume_model: /United-Perception/train_config/pretrain/300_65_ckpt_best.pth
      auto_resume: True
    
    
    
    ema:
      enable: false
      ema_type: exp
      kwargs:
        decay: 0.9998
    
    net:
    - name: backbone
      type: yolox_s
      kwargs:
        out_layers: [2, 3, 4]
        out_strides: [8, 16, 32]
        normalize: {type: mqbench_freeze_bn}
        act_fn: {type: Silu}
    - name: neck
      prev: backbone
      type: YoloxPAFPN
      kwargs:
        depth: 0.33
        out_strides: [8, 16, 32]
        normalize: {type: mqbench_freeze_bn}
        act_fn: {type: Silu}
    - name: roi_head
      prev: neck
      type: YoloXHead
      kwargs:
        num_classes: *num_classes
        width: 0.5
        num_point: &dense_points 1
        normalize: {type: mqbench_freeze_bn}
        act_fn: {type: Silu}
    - name: post_process
      prev: roi_head
      type: retina_post_iou
      kwargs:
        num_classes: *num_classes
                                      # number of classes including backgroudn. for rpn, it's 2; for RetinaNet, it's 81
        cfg:
          cls_loss:
            type: quality_focal_loss
            kwargs:
              gamma: 2.0
          iou_branch_loss:
            type: sigmoid_cross_entropy
          loc_loss:
            type: compose_loc_loss
            kwargs:
              loss_cfg:
              - type: iou_loss
                kwargs:
                  loss_type: giou
                  loss_weight: 1.0
              - type: l1_loss
                kwargs:
                  loss_weight: 1.0
          anchor_generator:
            type: hand_craft
            kwargs:
              anchor_ratios: [1]    # anchor strides are provided as feature strides by feature extractor
              anchor_scales: [4]   # scale of anchors relative to feature map
          roi_supervisor:
            type: atss
            kwargs:
              top_n: 9
              use_iou: true
          roi_predictor:
            type: base
            kwargs:
              pre_nms_score_thresh: 0.05    # to reduce computation
              pre_nms_top_n: 1000
              post_nms_top_n: 1000
              roi_min_size: 0                 # minimum scale of a valid roi
              merger:
                type: retina
                kwargs:
                  top_n: 100
                  nms:
                    type: naive
                    nms_iou_thresh: 0.65
    
    

    以下是报错信息:

    [MQBENCH] INFO: Enable observer and Disable quantize for act_fake_quant
    [MQBENCH] INFO: Enable observer and Disable quantize for act_fake_quant
    [MQBENCH] INFO: Enable observer and Disable quantize for act_fake_quant
    Traceback (most recent call last):
      File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/data/lsc/United-Perception/up/__main__.py", line 27, in <module>
        main()
      File "/data/lsc/United-Perception/up/__main__.py", line 21, in main
        args.run(args)
      File "/data/lsc/United-Perception/up/commands/train.py", line 144, in _main
        launch(main, args.num_gpus_per_machine, args.num_machines, args=args, start_method=args.fork_method)
      File "/data/lsc/United-Perception/up/utils/env/launch.py", line 52, in launch
        mp.start_processes(
      File "/opt/conda/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 188, in start_processes
        while not context.join():
      File "/opt/conda/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 150, in join
        raise ProcessRaisedException(msg, error_index, failed_process.pid)
    torch.multiprocessing.spawn.ProcessRaisedException: 
    
    -- Process 3 terminated with the following error:
    Traceback (most recent call last):
      File "/opt/conda/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap
        fn(i, *args)
      File "/data/lsc/United-Perception/up/utils/env/launch.py", line 117, in _distributed_worker
        main_func(args)
      File "/data/lsc/United-Perception/up/commands/train.py", line 134, in main
        runner = RUNNER_REGISTRY.get(runner_cfg['type'])(cfg, **runner_cfg['kwargs'])
      File "/data/lsc/United-Perception/up/tasks/quant/runner/quant_runner.py", line 17, in __init__
        super(QuantRunner, self).__init__(config, work_dir, training)
      File "/data/lsc/United-Perception/up/runner/base_runner.py", line 59, in __init__
        self.build()
      File "/data/lsc/United-Perception/up/tasks/quant/runner/quant_runner.py", line 34, in build
        self.calibrate()
      File "/data/lsc/United-Perception/up/tasks/quant/runner/quant_runner.py", line 182, in calibrate
        self.model(batch)
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/data/lsc/United-Perception/up/tasks/quant/models/model_helper.py", line 76, in forward
        output = submodule(input)
      File "/opt/conda/lib/python3.8/site-packages/torch/fx/graph_module.py", line 308, in wrapped_call
        return cls_call(self, *args, **kwargs)
      File "/opt/conda/lib/python3.8/site-packages/torch/fx/graph_module.py", line 308, in wrapped_call
        return cls_call(self, *args, **kwargs)
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "<eval_with_key_2>", line 4, in forward
        input_1_post_act_fake_quantizer = self.input_1_post_act_fake_quantizer(input_1);  input_1 = None
      File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/data/lsc/United-Perception/MQBench/mqbench/fake_quantize/fixed.py", line 20, in forward
        self.activation_post_process(X.detach())
    AttributeError: 'dict' object has no attribute 'detach'
    

    辛苦帮忙看下是什么问题?是mqbench还没有支持tengine么

    opened by RedHandLM 11
  • Hi, will export to QLinear save weights in int8?

    Hi, will export to QLinear save weights in int8?

    Using tensorrt backend, will QLinear make the onnx model smaller? I got some error when trying to save to QLinear:

    deploy/common.py", line 138, in optimize_model
        assert node_detect, "Graph is illegel, error occured!"
    AssertionError: Graph is illegel, error occured!
    
    
    bug 
    opened by jinfagang 10
  • how to use in mmdet build model

    how to use in mmdet build model

    when use mmdet build this model, it will like: object {
    module list aaaa module list bbb } when use prepare_by_platform to trace will get error like: TypeError: 'xxxobject' object does not support indexing

    Stale 
    opened by 791136190 10
  • how to ptq for Faster RCNN or SSD?

    how to ptq for Faster RCNN or SSD?

    From QDROP paper,i notice the benchmark result include Faster RCNN; image

    Could you provide this examples?

    In addition, it's best to provide PTQ of SSD,another import object detection network;

    opened by wangshankun 9
  • onnx inference

    onnx inference

    Hello. Finish model translate to onnx-quant, however cant use onnx-runtime to inference. error log No Op registered for LearnablePerTensorAffine with domain_version of 11

    opened by www516717402 9
  • 多个不同scale的输入,量化影响了结果

    多个不同scale的输入,量化影响了结果

    任务的模型有两个输入,一个是image,经过backbone后得到image features,另一个是输入其他detection模型检测得到的bbox 坐标,坐标经过了归一化,是0~1之间的float值。坐标经过线性层以及卷积层的上采样,结果与image features做concat。使用MQBench量化后,发现INT8的推理结果,对于head1精度很高,但是head2有明显的精度损失。 网络定义如下:

    image

    想问下这种结构的网络一般怎么处理?

    Stale 
    opened by zhouyang1989 8
  • DDP multi-gpu training issues with Imagenet example

    DDP multi-gpu training issues with Imagenet example

    I am trying to use multi-gpu QAT training using Imagenet example code. It runs into issue after first iteration training update.

    RuntimeError: grad.numel() == bucket_view.numel() INTERNAL ASSERT FAILED at "/pytorch/torch/lib/c10d/reducer.cpp":343, please report a bug to PyTorch.

    The code works fine with multi-gpu training if I comment the wrapper code that quantize the original model i.e., model=prepare_by_platform(model, args.backend). Did anyone encounter the same issue?

    opened by kartikgupta-at-anu 7
  • KeyError for Adaround、Qdrop

    KeyError for Adaround、Qdrop

    When I use the MQBench to quant RLFN model with Qdrop、adaround, some errors have occurred. env: Ubuntu18.04,cuda11.1, MQbench version: e2175203c8e62596e66500a720a6cb1d1fc1dacd RLFN is a super resolution model from: https://github.com/ofsoundof/NTIRE2022_ESR, the model id is 4. image

    error: [MQBENCH] INFO: Disable observer and Disable quantize. [MQBENCH] INFO: Disable observer and Enable quantize. [MQBENCH] INFO: prepare layer reconstruction for fea_conv [MQBENCH] INFO: the node list is below! [MQBENCH] INFO: [input_1_post_act_fake_quantizer, fea_conv, fea_conv_post_act_fake_quantizer_2] Traceback (most recent call last): File "quant.py", line 158, in main() File "quant.py", line 137, in main model = ptq_reconstruction(model, stacked_tensor, EasyDict(ptq_reconstruction_config)) File ".../mqbench/advanced_ptq.py", line 636, in ptq_reconstruction fp32_module = fp32_modules[qnode2fpnode_dict[layer_node_list[-1]]] KeyError: fea_conv_post_act_fake_quantizer_2

    Here is my code tracking and analysis

    (1)mode.code def forward(self, input): input_1 = input input_1_post_act_fake_quantizer = self.input_1_post_act_fake_quantizer(input_1); input_1 = None fea_conv = self.fea_conv(input_1_post_act_fake_quantizer); input_1_post_act_fake_quantizer = None fea_conv_post_act_fake_quantizer_2 = self.fea_conv_post_act_fake_quantizer(fea_conv) fea_conv_post_act_fake_quantizer_1 = self.fea_conv_post_act_fake_quantizer(fea_conv) fea_conv_post_act_fake_quantizer = self.fea_conv_post_act_fake_quantizer(fea_conv); fea_conv = None ... (2)"problems" 问题,quant model node.target多对1,导致quant_named_nodes缺少keys: mqbench/advanced_ptq.py-》qnode2fpnode(quant_modules, fp32_modules): def qnode2fpnode(quant_modules, fp32_modules): quant_named_nodes = {node.target: node for node in quant_modules} """ node:fea_conv_post_act_fake_quantizer_2 node.target:fea_conv_post_act_fake_quantizer node:fea_conv_post_act_fake_quantizer_1 node.target:fea_conv_post_act_fake_quantizer """ fp32_named_nodes = {node.target: node for node in fp32_modules} qnode2fpnode_dict = {quant_named_nodes[key]: fp32_named_nodes[key] for key in quant_named_nodes} return qnode2fpnode_dict

    I am not familiar with the process of trained PTQ, so looking forward to your suggestions and Solutions.

    opened by feixiang7701 7
  • MQBench的结果与SNPE DSP的结果不是位精确的

    MQBench的结果与SNPE DSP的结果不是位精确的

    MQBench是一个非常有趣的项目。

    环境 pytorch: 1.8.1 MQBench: branch main, e2175203 SNPE: snpe-1.61.0.3358

    问题: 我用一个只有两层卷积模型做了一个简单的测试,比对MQBench 量化后的结果和SNPE DSP的结果,发现并不是位精确的,请问一下这是否是正常的,我是否有哪里做错了。

    复现

    • MQBench量化
    def seed_torchv2(seed: int = 42) -> None:
        np.random.seed(seed)
        random.seed(seed)
        os.environ['PYTHONHASHSEED'] = str(seed)
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
            self.conv = nn.Conv2d(3, 128,1,1, bias=True)
            self.conv2 = nn.Conv2d(128, 20,1,1,bias=True)
            self.relu = nn.ReLU()
            self.flat = nn.Flatten(1)
    
        def forward(self, x): # (1,3,20,20)
            x = self.avg_pool(x)
            x = self.conv(x)
            x = self.conv2(x)
            x = self.flat(x)
            return x
    
        
    SIZE = 20
    backend = BackendType.SNPE
    
    np.set_printoptions(suppress=True, precision=6)
    torch.set_printoptions(6)
    seed_torchv2(42)
    
    
    def gen_input_data(length=100):
        data = []
        for _ in range(length):
            data.append(np.ones((1,3,SIZE,SIZE), dtype=np.float32) * 0.1 * np.random.randint(0, 10))
        return np.stack(data, axis=0)
    
    
    model = Net()          # use vision pre-defined model
    model.eval()
    
    train_data = gen_input_data(100)
    dummy_input = np.zeros((1,3,SIZE,SIZE), dtype=np.float32) + 0.5
    
    
    print("pytorch fp32 result")
    print(model(torch.from_numpy(dummy_input.copy())).float())
    
    
    # quant
    model = prepare_by_platform(model, backend)
    
    enable_calibration(model)
    
    for i, d in enumerate(train_data):
        _ = model(torch.from_numpy(d).float())
    
    enable_quantization(model)
    
    
    print("quant sim result")
    print(model(torch.from_numpy(dummy_input.copy())).float())
    
    
    input_shape = {"image":[1,3,SIZE,SIZE]}
    convert_deploy(model, backend, input_shape)
    
    # save dummy input and test it on DSP
    image = dummy_input.copy()
    assert image.shape == (1,3,SIZE,SIZE)
    assert image.dtype == np.float32
    image.tofile("./tmp.raw")
    print("#" * 50)
    
    pytorch fp32 result
    tensor([[-0.347889, -0.289117, -0.083191, -0.222827,  0.124699,  0.235278,
              0.434433, -0.302174, -0.047763,  0.229472, -0.037784,  0.082496,
             -0.150852, -0.170281,  0.130777,  0.146441, -0.494992, -0.182881,
              0.600709, -0.063706]], grad_fn=<ViewBackward>)
    
    quant sim result
    tensor([[-0.344930, -0.290467, -0.081694, -0.222389,  0.131618,  0.231466,
              0.435701, -0.299544, -0.049924,  0.226927, -0.036308,  0.081694,
             -0.149772, -0.172465,  0.131618,  0.149772, -0.494702, -0.181542,
              0.599088, -0.063540]], grad_fn=<ViewBackward>
    
    • DLC转换 ./snpe-onnx-to-dlc --input_network mqbench_qmodel_deploy_model.onnx --output_path tmp.dlc --quantization_overrides mqbench_qmodel_clip_ranges.json ./snpe-dlc-quantize --input_dlc tmp.dlc --input_list tmp_file.txt --output_dlc tmp_quat_mq.dlc --override_params --bias_bitwidth 32 tmp_file.txt和tmp_file_android.txt都只有一个文件就是tmp.raw,tmp.raw在上面python程序里面保存下来为一个3x20x20的float文件

    • SNPE DSP run ./snpe-net-run --container /sdcard/tmp_quat_mq.dlc --input_list /sdcard/tmp_file_android.txt --use_dsp

    ################################################## 74.raw (20,) [-0.34493 -0.285929 -0.081694 -0.222389 0.127079 0.236005 0.435701 -0.299544 -0.049924 0.226927 -0.036308 0.081694 -0.149772 -0.172465 0.131618 0.149772 -0.490163 -0.177003 0.599088 -0.068078]

    比对quant sim result 和 DSP 的结果,可以看到粗斜体是二者不一致的地方

    good first issue Stale 
    opened by changewOw 7
  • Train with PACT but the value for cliping weights and activations which denoted as `alpha` seems not change.

    Train with PACT but the value for cliping weights and activations which denoted as `alpha` seems not change.

    the value for cliping weights and activations which denoted as alpha is initialized to 6.0, In my opinion, this value should be updated during training, but I found it not, I am training with the imagenet_example just adding such following configs to make PACT working.

    if args.quant:
            extra_params = {
                'extra_qconfig_dict': {
                    'w_observer': "MinMaxObserver",
                    'a_observer': "EMAMinMaxObserver",
                    'w_fakequantize': "PACTFakeQuantize",
                    'a_fakequantize': "PACTFakeQuantize",
                    'a_fakeq_params': {},
                    'w_qscheme': {
                        'bit': 8,
                        'symmetry': True,
                        'per_channel': False,
                        'pot_scale': False
                    },
                    'a_qscheme': {
                        'bit': 8,
                        'symmetry': True,
                        'per_channel': False,
                        'pot_scale': False
                    }
                },
                'extra_quantizer_dict': {},
                'preserve_attr': {},
                'concrete_args': {},
                'extra_fuse_dict': {}
            }
            print("==> config with extra params", extra_params)
            model = prepare_by_platform(model, args.backend, extra_params)
    
    bug 
    opened by jianyin2016 7
  • 关于使用ONNX-QNN在生成Deploy模型出现的问题

    关于使用ONNX-QNN在生成Deploy模型出现的问题

    您好,非常感谢您的出色工作。我是MQBench的初学者,在使用您mqbench的QNN方案对vgg19模型进行量化时,我发现当我使用以下config的时候,生成的onnx模型无法进行下一步的模型转换,也就是去除伪量化块,生成Deploy模型。请问这样的问题该如何解决?

                extra_qconfig_dict = {
                    'w_observer': 'ClipStdObserver',
                    'a_observer': 'ClipStdObserver',
                    'w_fakequantize': 'DSQFakeQuantize',
                    'a_fakequantize': 'DSQFakeQuantize',
                    'w_qscheme': {
                        'bit': 8,
                        'symmetry': True,
                        'per_channel': False,
                        'pot_scale': True
                    },
                    'a_qscheme': {
                        'bit': 8,
                        'symmetry': True,
                        'per_channel': False,
                        'pot_scale': True
                    }
                }
                prepare_custom_config_dict = {
                    'extra_qconfig_dict': extra_qconfig_dict
                }
               self.model = prepare_by_platform(self.model, BackendType.ONNX_QNN, prepare_custom_config_dict)
    

    报错信息如下

      File "openpose_mqb.py", line 411, in train
        convert_deploy(self.model, BackendType.ONNX_QNN, input_shape, model_name = 'model_QNN')
      File "MQBench-0.0.6-py3.9.egg/mqbench/convert_deploy.py", line 184, in convert_deploy
        convert_function(deploy_model, **kwargs)
      File "MQBench-0.0.6-py3.9.egg/mqbench/convert_deploy.py", line 138, in deploy_qparams_tvm
        ONNXQNNPass(onnx_model_path).run(model_name)
      File "MQBench-0.0.6-py3.9.egg/mqbench/deploy/deploy_onnx_qnn.py", line 273, in run
        self.format_qlinear_dtype_pass()
      File "MQBench-0.0.6-py3.9.egg/mqbench/deploy/deploy_onnx_qnn.py", line 258, in format_qlinear_dtype_pass
        scale, zero_point, qmin, qmax = node.input[1], node.input[2], node.input[3], node.input[4]
    IndexError: list index (3) out of range
    
    opened by Zhoukai1234 1
  • The QAT top1@acc of mobilenet_v2 a4w4 LSQ cannot be reproduced as the paper shown 70.6%.

    The QAT [email protected] of mobilenet_v2 a4w4 LSQ cannot be reproduced as the paper shown 70.6%.

    Hi, thanks for providing this amazing quantization framework ! I want to reproduce the [email protected] of mobilenet_v2 a4w4 LSQ under academic setting. The quantization configuration is as below:

    dict(qtype='affine',    
     w_qscheme=QuantizeScheme(symmetry=True, per_channel=True, pot_scale=False, bit=4, symmetric_range=False, p=2.4),
                                     a_qscheme=QuantizeScheme(symmetry=True, per_channel=False, pot_scale=False, bit=4, symmetric_range=False, p=2.4),
                                     default_weight_quantize=LearnableFakeQuantize,
                                     default_act_quantize=LearnableFakeQuantize,
                                     default_weight_observer=MSEObserver,
                                     default_act_observer=EMAMSEObserver),
    

    For the training strategy, I set weght decay=0, lr = 1e-3 and batch_size=128 per GPU using 8 cards Nvidia A100. And the adjust_learning_rate strategy is remained the same as main.py. However, the highest [email protected] I reproduced in the validation set was only 68.66%, which is far from the 70.6% as the paper presented.

    Which part I have missed ?

    opened by LuletterSoul 0
  • 关于yolov5s进行PTQ量化出现TraceError问题

    关于yolov5s进行PTQ量化出现TraceError问题

    嗨 大家好,

    今天我尝试使用mqbench对yolov5s进行PTQ量化

    yolov5s模型来自于:https://github.com/ultralytics/yolov5.git

    当我尝试如下代码进行yolov5s量化处理时

    from mqbench.prepare_by_platform import prepare_by_platform, BackendType
    
    backend = BackendType.ONNX_QNN
    model = prepare_by_platform(model, backend)
    

    出现了这个问题

    torch.fx.proxy.TraceError: symbolically traced variables cannot be used as inputs to control flow
    

    请问大家,这个问题有什么好的,简便的方式处理呢?

    opened by xiaopengaia 2
  • 关于如何将conv和bn层进行合并的问题

    关于如何将conv和bn层进行合并的问题

    嗨 大家好,

    今天在做resnet50量化的时候,想将conv层和bn层进行合并,然后进行量化

    为此我找到了fuser_method_mappings.py这个文件

    同时调用了fuse_conv_freezebn这个函数

    但在进行合并的时候,发现需要将网络中的conv和bn单独提取处理来,进行合并

    显然,这样操作似乎过于麻烦些

    因此,我尝试寻找r50_8_8.yaml中能够针对conv和bn相互融合的参数,未果

    想请教大家是如何合并bn和conv层的

    有没有较好的简便的方法,或者在r50_8_8.yaml是否有参数能够进行处理呢?

    希望得到指正,谢谢大家!

    opened by xiaopengaia 2
Releases(v0.0.7)
Owner
Before Spring
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022