PyContinual (An Easy and Extendible Framework for Continual Learning)

Overview

PyContinual (An Easy and Extendible Framework for Continual Learning)

Easy to Use

You can sumply change the baseline, backbone and task, and then ready to go. Here is an example:

	python run.py \  
	--bert_model 'bert-base-uncased' \  
	--backbone bert_adapter \ #or other backbones (bert, w2v...)  
	--baseline ctr \  #or other avilable baselines (classic, ewc...)
	--task asc \  #or other avilable task/dataset (dsc, newsgroup...)
	--eval_batch_size 128 \  
	--train_batch_size 32 \  
	--scenario til_classification \  #or other avilable scenario (dil_classification...)
	--idrandom 0  \ #which random sequence to use
	--use_predefine_args #use pre-defined arguments

Easy to Extend

You only need to write your own ./dataloader, ./networks and ./approaches. You are ready to go!

Introduction

Recently, continual learning approaches have drawn more and more attention. This repo contains pytorch implementation of a set of (improved) SoTA methods using the same training and evaluation pipeline.

This repository contains the code for the following papers:

Features

  • Datasets: It currently supports Language Datasets (Document/Sentence/Aspect Sentiment Classification, Natural Language Inference, Topic Classification) and Image Datasets (CelebA, CIFAR10, CIFAR100, FashionMNIST, F-EMNIST, MNIST, VLCS)
  • Scenarios: It currently supports Task Incremental Learning and Domain Incremental Learning
  • Training Modes: It currently supports single-GPU. You can also change it to multi-node distributed training and the mixed precision training.

Architecture

./res: all results saved in this folder.
./dat: processed data
./data: raw data ./dataloader: contained dataloader for different data ./approaches: code for training
./networks: code for network architecture
./data_seq: some reference sequences (e.g. asc_random) ./tools: code for preparing the data

Setup

  • If you want to run the existing systems, please see run_exist.md
  • If you want to expand the framework with your own model, please see run_own.md
  • If you want to see the full list of baselines and variants, please see baselines.md

Reference

If using this code, parts of it, or developments from it, please consider cite the references bellow.

@inproceedings{ke2021achieve,
  title={Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning},
  author={Ke, Zixuan and Liu, Bing and Ma, Nianzu and Xu, Hu, and Lei Shu},
  booktitle={NeurIPS},
  year={2021}
}

@inproceedings{ke2021contrast,
  title={CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Liu, Bing and Xu, Hu, and Lei Shu},
  booktitle={EMNLP},
  year={2021}
}

@inproceedings{ke2021adapting,
  title={Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Xu, Hu and Liu, Bing},
  booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
  pages={4746--4755},
  year={2021}
}

@inproceedings{ke2020continualmixed,
author= {Ke, Zixuan and Liu, Bing and Huang, Xingchang},
title= {Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks},
booktitle = {Advances in Neural Information Processing Systems},
volume={33},
year = {2020}}

@inproceedings{ke2020continual,
author= {Zixuan Ke and Bing Liu and Hao Wang and Lei Shu},
title= {Continual Learning with Knowledge Transfer for Sentiment Classification},
booktitle = {ECML-PKDD},
year = {2020}}

Contact

Please drop an email to Zixuan Ke, Xingchang Huang or Nianzu Ma if you have any questions regarding to the code. We thank Bing Liu, Hu Xu and Lei Shu for their valuable comments and opinioins.

Owner
Zixuan Ke
Zixuan Ke
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022