This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

Overview

teaset

AtlasNet V2 - Learning Elementary Structures

This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a look at those)

This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

Citing this work

If you find this work useful in your research, please consider citing:

@inproceedings{deprelle2019learning,
  title={Learning elementary structures for 3D shape generation and matching},
  author={Deprelle, Theo and Groueix, Thibault and Fisher, Matthew and Kim, Vladimir and Russell, Bryan and Aubry, Mathieu},
  booktitle={Advances in Neural Information Processing Systems},
  pages={7433--7443},
  year={2019}
}

Project Page

The project page is available http://imagine.enpc.fr/~deprellt/atlasnet2/

Install

Clone the repo and install dependencies

This implementation uses Pytorch.

## Download the repository
git clone https://github.com/TheoDEPRELLE/AtlasNetV2.git
cd AtlasNetV2
## Create python env with relevant packages
conda create --name atlasnetV2 python=3.7
source activate atlasnetV2
pip install pandas visdom
conda install pytorch torchvision -c pytorch
conda install -c conda-forge matplotlib
# you're done ! Congrats :)

Training

Data

cd data; ./download_data.sh; cd ..

We used the ShapeNet dataset for 3D models.

When using the provided data make sure to respect the shapenet license.

The trained models and some corresponding results are also available online :

Build chamfer distance

The chamfer loss is based on a custom cuda code that need to be compile.

source activate pytorch-atlasnet
cd ./extension
python setup.py install

Start training

  • First launch a visdom server :
python -m visdom.server -p 8888
  • Check out all the options :
git pull; python training/train.py --help
  • Run the baseline :
git pull; python training/train.py --model AtlasNet --adjust mlp
git pull; python training/train.py --model AtlasNet --adjust linear
  • Run the Patch Deformation module with the different adjustment modules :
git pull; python training/train.py --model PatchDeformation --adjust mlp
git pull; python training/train.py --model PatchDeformation --adjust linear
  • Run the Point Translation module with the different adjustment modules:
git pull; python training/train.py --model PointTranslation --adjust mlp
git pull; python training/train.py --model PointTranslation --adjust linear

Models

The models train on the SURREAL dataset for the FAUST competition can be found here

Acknowledgement

This work was partly supported by ANR project EnHerit ANR-17-CE23-0008, Labex Bezout, and gifts from Adobe to Ecole des Ponts.

License

MIT

Comments
  • Unable to download shapenet data

    Unable to download shapenet data

    Hi,

    I am trying to download data form download.sh script. But it is giving 404 error.

    --2020-12-01 14:38:25-- https://cloud.enpc.fr/s/j2ECcKleA1IKNzk/download Resolving cloud.enpc.fr (cloud.enpc.fr)... 195.221.193.80 Connecting to cloud.enpc.fr (cloud.enpc.fr)|195.221.193.80|:443... connected. HTTP request sent, awaiting response... 404 Not Found 2020-12-01 14:38:26 ERROR 404: Not Found.

    could you please provide an alternative link?

    opened by brjathu 11
  • Question about evaluation critetion in paper?

    Question about evaluation critetion in paper?

    image Here, it is said that the reconstruction task is evaluated by chamfer distance. But for surreal data, the ground-truth correspondences are known. Why not just compute the L2 distance for correponding points?

    opened by GostInShell 3
  • How to Generate 16384 points for Point Translation Module?

    How to Generate 16384 points for Point Translation Module?

    As discussed in https://github.com/ThibaultGROUEIX/AtlasNet/issues/42, I want to upsample the results of the point translation module. Since this module takes a fixed number of points into the network. I don't know whether training a new model taking 16384 points as input is justifiable to compare with our method.

    opened by hzxie 2
  • The question about initialization of 'rand_grid' in the ./auxiliary/model.py

    The question about initialization of 'rand_grid' in the ./auxiliary/model.py

    I have a question. In the file 'model.py', line 378,379, why the variable 'rand_grid' is initialized to uniform(0,1) before it is initialized to zero. What is the reason? Thanks!

    bug 
    opened by tommaoer 2
  • Two bugs when running train.py

    Two bugs when running train.py

    First bug is

    Traceback (most recent call last):
      File "training/train.py", line 140, in <module>
        visdom = visdom.Visdom(env=opt.training_id, port=8888)
    TypeError: __init__() got an unexpected keyword argument 'env'
    

    and I delete env=opt.training_id, then i re-run this code. And Second bug is

    Traceback (most recent call last):
      File "training/train.py", line 209, in <module>
        color =  [[125,125,125]]*(batch.size(1))
    NameError: name 'batch' is not defined
    
    opened by Yuzuki-N 0
  • unused model in PointTransLinAdj

    unused model in PointTransLinAdj

    It seems that a deformation layer is defined and not used. https://github.com/TheoDEPRELLE/AtlasNetV2/blob/master/auxiliary/model.py#L302

    Did you intend to use this model?

    opened by orenkatzir 0
  • About visualization

    About visualization

    Hi, first thanks for your inspiring work! Point cloud rendering figures in your paper are beautiful as follows. How do you draw it? Using open3d, meshlab or other programmes?

    Thanks! image

    opened by StevenZzz07 0
  • Pretrained Models

    Pretrained Models

    Hi,

    I am trying to download data from https://cloud.enpc.fr/s/c27Df7fRNXW2uG3, but i get an 404 error. Could you please provide an alternative link? Thanks

    opened by rspezialetti 0
  • The problem of test.

    The problem of test.

    Dear professor, I have read the paper of " Learning Elementary Structures",and I have some problems. I have trained this network use datasets of Shapenet, and I get files of "network.pth" and "opt.pickle". But I can't find where is the "Elementary Structures" ,so I don't know how to compute correspondence use these "Elementary Structures". So I think your readme.md document is not complete, would you like to explain this issues.I don't know what to do after I finished trained my datasets, and how to get the correspondence. Looking for your early reply. Thank you!

    opened by cainiaoshidai 0
Releases(1-beta)
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022