A minimalist tool to display a network graph.

Overview

A tool to get a minimalist view of any architecture

This tool has only be tested with the models included in this repo. Therefore, I can't guarantee that it will work with other architectures, maybe you will have to adapt it a bit if your architecture is too complex or unusual.

The code to get the graph edges and nodes is a modified version of this repo. It does it by using the torch.jit._get_trace_graph functions of Pytorch.

The code to draw the graph is my own code, and I used Turtle graphics. I didn't use an existing library as my objective was to have something minimalist (i.e. no need to install anything, and the drawn graph only contains the essential info).

Quick start

python3 main.py --arch arch_name --input input_size

By default, --arch is resnet_50 and --input is 224.

Options for --arch (feel free to add more in models):

input 224:

  • mixnet_s, mixnet_m, mixnet_l
  • atomnas_a
  • resnet_50
  • mobilenet_v1
  • mobilenet_v2
  • shufflenetv2plus_small

input 32:

  • vgg_16_bn
  • googlenet
  • densenet_40

Explanation of the view

The info printed at the top left corner appears when the mouse is over an operation. It indicates the node id, the operation type, the parents and children nodes (and the position of the node in the screen, in debug mode).

The legend isn't printed (since we can get the info by hovering the mouse over the nodes), but the most important things to know are: yellow with a dot is conv (different shades for different kernel size), purple-ish is ReLU, green is BN, pink with a dot is Linear.

ResNet 50 (resnet_50): resnet_50

MixNet large (mixnet_l): mixnet_l

Mouse commands

Left click will draw a big dot. Right click will erase all the dots. Mouse scroll will change the color (the selected color will be shown at the top left of the screen: by default, 5 different colors are available).

Modify the code

The list of available operations being really long, I didn't implement a specific drawing for all of them. If you feel like one of them should be added, this can be done easily in op.py. The one that are not implemented will be displayed in dark grey by default.

If you want to add a model, put the architecture file in models, import it in main.py, and you are good to go.

If there is a specific operation that you don't want to see, you can add it in the REMOVED_NODES list in graph.py.

Also, if you have improvement ideas or if you want to contribute, you can send me a message :)

Known issues

  • If you use a model that contains slices with step>1, then you will get the following error:
RuntimeError: step!=1 is currently not supported

This is due too the torch.onnx._optimize_trace function that doesn't support step>1 slices (so for instance, you can't do x[::2]).

  • For complex connections (such as in atomnas model), some connections are drawn on top of each other, so it may be hard to understand. In this situation, you can use the text info (top left) to know the children and parents of each nodes.

Requirements 🔧

  • pytorch
Owner
Thibault Castells
I do research in NN compression, and I like it :)
Thibault Castells
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022