ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Overview

Robust Place Recognition using an Imaging Lidar

A place recognition package using high-resolution imaging lidar. For best performance, a lidar equipped with more than 64 uniformly distributed channels is strongly recommended, i.e., Ouster OS1-128 lidar.

drawing


Dependency

  • ROS
  • DBoW3
    cd ~/Downloads/
    git clone https://github.com/rmsalinas/DBow3.git
    cd ~/Downloads/DBow3/
    mkdir build && cd build
    cmake -DCMAKE_BUILD_TYPE=Release ..
    sudo make install
    

Install Package

Use the following commands to download and compile the package.

cd ~/catkin_ws/src
git clone https://github.com/TixiaoShan/imaging_lidar_place_recognition.git
cd ..
catkin_make

Notes

Download

The three datasets used in the paper can be downloaded from from Google Drive. The lidar used for data-gathering is Ouster OS1-128.

https://drive.google.com/drive/folders/1G1kE8oYGKj7EMdjx7muGucXkt78cfKKU?usp=sharing

Point Cloud Format

The author defined a customized point cloud format, PointOuster, in parameters.h. The customized point cloud is projected onto various images in image_handler.h. If you are using your own dataset, please modify these two files to accommodate data format changes.

Visualization logic

In the current implementation, the package subscribes to a path message that is published by a SLAM framework, i.e., LIO-SAM. When a new point cloud arrives, the package associates the point cloud with the latest pose in the path. If a match is detected between two point clouds, an edge marker is plotted between these two poses. The reason why it's implemented in this way is that SLAM methods usually suffer from drift. If a loop-closure is performed, the associated pose of a point cloud also needs to be updated. Thus, this visualization logic can update point clouds using the updated path rather than using TF or odometry that cannot be updated later.

Image Crop

It's recommended to set the image_crop parameter in params.yaml to be 196-256 when testing the indoor and handheld datasets. This is because the operator is right behind the lidar during the data-gathering process. Using features extracted from the operator body may cause unreliable matching. This parameter should be set to 0 when testing the Jackal dataset, which improves the reverse visiting detection performance.


Test Package

  1. Run the launch file:
roslaunch imaging_lidar_place_recognition run.launch
  1. Play existing bag files:
rosbag play indoor_registered.bag -r 3

Paper

Thank you for citing our paper if you use any of this code or datasets.

@inproceedings{robust2021shan,
  title={Robust Place Recognition using an Imaging Lidar},
  author={Shan, Tixiao and Englot, Brendan and Duarte, Fabio and Ratti, Carlo and Rus Daniela},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  pages={to-be-added},
  year={2021},
  organization={IEEE}
}

Acknowledgement

  • The point clouds in the provided datasets are registered using LIO-SAM.
  • The package is heavily adapted from Vins-Mono.
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023