ARU-Net - Deep Learning Chinese Word Segment

Overview

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents

Contents

Introduction

This is the Tensorflow code corresponding to A Two-Stage Method for Text Line Detection in Historical Documents . This repo contains the neural pixel labeling part described in the paper. It contains the so-called ARU-Net (among others) which is basically an extended version of the well known U-Net [2]. Besides the model and the basic workflow to train and test models, different data augmentation strategies are implemented to reduce the amound of training data needed. The repo's features are summarized below:

  • Inference Demo
    • Trained and freezed tensorflow graph included
    • Easy to reuse for own inference tests
  • Workflow
    • Full training workflow to parametrize and train your own models
    • Contains different models, data augmentation strategies, loss functions
    • Training on specific GPU, this enables the training of several models on a multi GPU system in parallel
    • Easy validation for trained model either using classical or ema-shadow weights

Please cite [1] if you find this repo useful and/or use this software for own work.

Installation

  1. Use python 2.7
  2. Any version of tensorflow version > 1.0 should be ok.
  3. Python packages: matplotlib (>=1.3.1), pillow (>=2.1.0), scipy (>=1.0.0), scikit-image (>=0.13.1), click (>=5.x)
  4. Clone the Repo
  5. Done

Demo

To run the demo follow:

  1. Open a shell
  2. Make sure Tensorflow is available, e.g., go to docker environment, activate conda, ...
  3. Navigate to the repo folder YOUR_PATH/ARU-Net/
  4. Run:
python run_demo_inference.py 

The demo will load a trained model and perform inference for five sample images of the cBad test set [3], [4]. The network was trained to predict the position of baselines and separators for the begining and end of each text line. After running the python script you should see a matplot window. To go to the next image just close it.

Example

The example images are sampled from the cBad test set [3], [4]. One image along with its results are shown below.

image_1 image_2 image_3

Training

This section describes step-by-step the procedure to train your own model.

Train data:

The following describes how the training data should look like:

  • The images along with its pixel ground truth have to be in the same folder
  • For each image: X.jpg, there have to be images named X_GT0.jpg, X_GT1.jpg, X_GT2.jpg, ... (for each channel to be predicted one GT image)
  • Each ground truth image is binary and contains ones at positions where the corresponding class is present and zeros otherwise (see demo_images/demo_traindata for a sample)
  • Generate a list containing row-wise the absolute pathes to the images (just the document images not the GT ones)

Val data:

The following describes how the validation data should look like:

Train the model:

The following describes how to train a model:

  • Have a look at the pix_lab/main/train_aru.py script
  • Parametrize it like you wish (have a look at the data_provider, cost and optimizer scripts to see all parameters)
  • Setting the correct paths, adapting the number of output classes and using the default parametrization should work fine for a first training
  • Run:
python -u pix_lab/main/train_aru.py &> info.log 

Validate the model:

The following describes how to validate a trained model:

  • Train and val losses are printed in info.log
  • To validate the checkpoints using the classical weights as well as its ema-shadows, adapt and run:
pix_lab/main/validate_ckpt.py

Comments

If you are interested in a related problem, this repo could maybe help you as well. The ARU-Net can be used for each pixel labeling task, besides the baseline detection task, it can be easily used for, e.g., binarization, page segmentation, ... purposes.

References

Please cite [1] if using this code.

A Two-Stage Method for Text Line Detection in Historical Documents

[1] T. Grüning, G. Leifert, T. Strauß, R. Labahn, A Two-Stage Method for Text Line Detection in Historical Documents

@article{Gruning2018,
arxivId = {1802.03345},
author = {Gr{\"{u}}ning, Tobias and Leifert, Gundram and Strau{\ss}, Tobias and Labahn, Roger},
title = {{A Two-Stage Method for Text Line Detection in Historical Documents}},
url = {http://arxiv.org/abs/1802.03345},
year = {2018}
}

U-Net: Convolutional Networks for Biomedical Image Segmentation

[2] O. Ronneberger, P, Fischer, T, Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation

@article{Ronneberger2015,
arxivId = {1505.04597},
author = {Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
journal = {Miccai},
pages = {234--241},
title = {{U-Net: Convolutional Networks for Biomedical Image Segmentation}},
year = {2015}
}

READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents

[3] T. Grüning, R. Labahn, M. Diem, F. Kleber, S. Fiel, READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents

@article{Gruning2017,
arxivId = {1705.03311},
author = {Gr{\"{u}}ning, Tobias and Labahn, Roger and Diem, Markus and Kleber, Florian and Fiel, Stefan},
title = {{READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents}},
url = {http://arxiv.org/abs/1705.03311},
year = {2017}
}

A Robust and Binarization-Free Approach for Text Line Detection in Historical Documents

[4] M. Diem, F. Kleber, S. Fiel, T. Grüning, B. Gatos, ScriptNet: ICDAR 2017 Competition on Baseline Detection in Archival Documents (cBAD)

@misc{Diem2017,
author = {Diem, Markus and Kleber, Florian and Fiel, Stefan and Gr{\"{u}}ning, Tobias and Gatos, Basilis},
doi = {10.5281/zenodo.257972},
title = {ScriptNet: ICDAR 2017 Competition on Baseline Detection in Archival Documents (cBAD)},
year = {2017}
}
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
A bot that extract text from images using the Tesseract OCR.

Text from image (OCR) @ocr_text_bot A simple bot to extract text from images. Usage What do I need? A AWS key configured locally, see here. NodeJS. I

Weverton Marques 4 Aug 06, 2021
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
Localization of thoracic abnormalities model based on VinBigData (top 1%)

Repository contains the code for 2nd place solution of VinBigData Chest X-ray Abnormalities Detection competition. The goal of competition was to auto

33 May 24, 2022
Awesome Spectral Indices in Python.

Awesome Spectral Indices in Python: Numpy | Pandas | GeoPandas | Xarray | Earth Engine | Planetary Computer | Dask GitHub: https://github.com/davemlz/

David Montero Loaiza 98 Jan 02, 2023
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
✌️Using this you can control your PC/Laptop volume by Hand Gestures created with Python.

Hand Gesture Volume Controller ✋ Hand recognition 👆 Finger recognition 🔊 you can decrease and increase volume Demo Code Firstly I have created a Mod

Abbas Ataei 19 Nov 17, 2022
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
Recognizing the text contents from a scanned visiting card

Recognizing the text contents from a scanned visiting card. The application which is used to recognize the text from scanned images,printeddocuments,r

Faizan Habib 1 Jan 28, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023
Usando o Amazon Textract como OCR para Extração de Dados no DynamoDB

dio-live-textract2 Repositório de código para o live coding do dia 05/10/2021 sobre extração de dados estruturados e gravação em banco de dados a part

hugoportela 0 Jan 19, 2022
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022