Full Resolution Residual Networks for Semantic Image Segmentation

Related tags

Deep LearningFRRN
Overview

Full-Resolution Residual Networks (FRRN)

This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) as described in

Tobias Pohlen, Alexander Hermans, Markus Mathias, Bastian Leibe: Full Resolution Residual Networks for Semantic Segmentation in Street Scenes. CVPR 2017.

A pre-print of the paper can be found on arXiv: arXiv:1611.08323.

Please cite the work as follows:

@inproceedings{pohlen2017FRRN,
  title={Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes},
  author={Pohlen, Tobias and Hermans, Alexander and Mathias, Markus and Leibe, Bastian},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on},
  year={2017}
}

Demo Video

Click here to watch our video.

Installation

Install the following software packages:

  • Python 2.7 or 3.4
  • Numpy
  • Scipy
  • Scikit-Learn
  • OpenCV
  • Theano
    • Scipy
    • Scikit-Learn
  • Lasagne

You may optionally install the following library for better performance.

You can check if all dependencies are installed correctly by running the check_dependencies.py script:

$ python check_dependencies.py --cs_folder=[Your CS folder]
2017-07-26 22:17:34,945 INFO Found supported Python version 3.4.
2017-07-26 22:17:35,122 INFO Successfully imported numpy.
2017-07-26 22:17:35,184 INFO Successfully imported cv2.
2017-07-26 22:17:35,666 INFO Successfully imported sklearn.
2017-07-26 22:17:35,691 INFO Successfully imported sklearn.metrics.
2017-07-26 22:17:35,691 INFO Successfully imported scipy.
Using cuDNN version 6021 on context None
Mapped name None to device cuda: TITAN X (Pascal) (0000:02:00.0)
2017-07-26 22:17:38,760 INFO Successfully imported theano.
2017-07-26 22:17:38,797 INFO Successfully imported lasagne.
2017-07-26 22:17:38,797 INFO Theano float is float32.
2017-07-26 22:17:38,803 INFO cuDNN spatial softmax found.
2017-07-26 22:17:38,807 INFO Use Chianti C++ library.
2017-07-26 22:17:38,826 INFO Found CityScapes training set.
2017-07-26 22:17:38,826 INFO Found CityScapes validation set.

If you don't see any ERROR messages, the software should run on your machine.

Qualitatively evaluation a pre-trained model

Run the script predict.py.

$ python predict.py --help
usage: predict.py [-h] --architecture {frrn_a,frrn_b} --model_file MODEL_FILE
                  --cs_folder CS_FOLDER [--sample_factor SAMPLE_FACTOR]

Shows the predictions of a Full-Resolution Residual Network on the Cityscapes
validation set.

optional arguments:
  -h, --help            show this help message and exit
  --architecture {frrn_a,frrn_b}
                        The network architecture type.
  --model_file MODEL_FILE
                        The model filename. Weights are initialized to the
                        given values if the file exists. Snapshots are stored
                        using a _snapshot_[iteration] post-fix.
  --cs_folder CS_FOLDER
                        The folder that contains the Cityscapes Dataset.
  --sample_factor SAMPLE_FACTOR
                        The sampling factor.

Train a new model

Run the train.py script.

$ python train.py --help
usage: train.py [-h] --architecture {frrn_a,frrn_b,frrn_c} --model_file
                MODEL_FILE --log_file LOG_FILE --cs_folder CS_FOLDER
                [--batch_size BATCH_SIZE]
                [--validation_interval VALIDATION_INTERVAL]
                [--iterator {uniform,weighted}] [--crop_size CROP_SIZE]
                [--learning_rate LEARNING_RATE]
                [--sample_factor SAMPLE_FACTOR]

Trains a Full-Resolution Residual Network on the Cityscapes Dataset.

optional arguments:
  -h, --help            show this help message and exit
  --architecture {frrn_a,frrn_b}
                        The network architecture type.
  --model_file MODEL_FILE
                        The model filename. Weights are initialized to the
                        given values if the file exists. Snapshots are stored
                        using a _snapshot_[iteration] post-fix.
  --log_file LOG_FILE   The log filename. Use log_monitor.py in order to
                        monitor training progress in the terminal.
  --cs_folder CS_FOLDER
                        The folder that contains the Cityscapes Dataset.
  --batch_size BATCH_SIZE
                        The batch size.
  --validation_interval VALIDATION_INTERVAL
                        The validation interval.
  --iterator {uniform,weighted}
                        The dataset iterator type.
  --crop_size CROP_SIZE
                        The size of crops to extract from the full-resolution
                        images. If 0, then now crops will be extracted.
  --learning_rate LEARNING_RATE
                        The learning rate to use.
  --sample_factor SAMPLE_FACTOR
                        The sampling factor.

Monitor training

Start a new notebook server and open training_monitor.ipynb.

License

See LICENSE (MIT).

Copyright

Copyright (c) 2017 Google Inc.

Copyright (c) 2017 Toby Pohlen

Owner
Toby Pohlen
Toby Pohlen
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023