A library for uncertainty quantification based on PyTorch

Overview

Torchuq [logo here]

TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representations for uncertainty, and around 50 different methods for uncertainty evaluation and visualization, calibration and conformal prediction.

Why TorchUQ

TorchUQ is a one-stop solution for uncertainty quantification (UQ).

Accurate uncertainty quantification (UQ) is extremely important in high-stakes applications such as autonomous driving, healthcare, and public policy --- prediction models in such applications should know what they do not know. UQ also finds numerous applications in active learning, statistical inference, or in natural science and engineering applications that are rife with sources of uncertainty.

For practitioners

Torchuq aims to provide an easy to use arsenal of uncertainty quantification methods. Torchuq is designed for the following benefits:

Plug and Play: Simple unified interface to access a large arsenal of UQ methods.

Built on PyTorch: Native GPU & auto-diff support, seamless integration with deep learning pipelines.

Documentation: Detailed tutorial to walk through popular UQ algorithms. Extensive documentation.

Extensive and Extensible: Supports calibration, conformal, multi-calibration and forecast evaluation. Easy to add new methods.

For researchers

Torchuq aims to provide a easy to use platform for conducting and distributing research on uncertainty quantification. Torchuq is designed for the following benefits:

Baseline implementation: TorchUQ provides high quality implementation of many popular baseline methods to standardize comparison.

Benchmark datasets: a large set of datasets used in recent UQ papers with a one-line interface to retrieve these datasets.

Distribute your research: you are welcome to distribute your algorithm via the TorchUQ interface. For details see [link].

Installation

First download the torchuq from pypi. To run the code, you can install the dependencies with the follwoing command

pip3 install requirements

pypi package link to come

Quickstart

import torchuq
from torchuq.evaluate import distribution 
from torchuq.transform.conformal import ConformalCalibrator 
from torchuq.dataset import create_example_regression  

In this very simple example, we create a synthetic prediction (which is a set of Gaussian distributions) and recalibrate them with conformal calibration.

predictions, labels = create_example_regression()

The example predictions are intentially incorrect (i.e. the label is not drawn from the predictions). We will recalibrate the distribution with a powerful recalibration algorithm called conformal calibration. It takes as input the predictions and the labels, and learns a recalibration map that can be applied to new data (here for illustration purposes we apply it to the original data).

calibrator = ConformalCalibrator(input_type='distribution', interpolation='linear')
calibrator.train(predictions, labels)
adjusted_predictions = calibrator(predictions)

We can plot these distribution predictions as a sequence of density functions, and the labels as the cross-shaped markers. As shown by the plot, the original predictions have systematically incorrect variance and mean, which is fixed by the recalibration algorithm.

distribution.plot_density_sequence(predictions, labels, smooth_bw=10)
distribution.plot_density_sequence(adjusted_predictions, labels, smooth_bw=10)

plot_original plot_calibrate

What's Next?

A good way to start is to read about the basic design philosophy and usage of the package, then go through these tutorials. All the tutorials are interactive jupyter notebooks. You can either download them to run locally or view them here.

Owner
TorchUQ
TorchUQ
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022