Chinese Pre-Trained Language Models (CPM-LM) Version-I

Overview

CPM-Generate

为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告]

若您想使用CPM-1进行推理,我们建议使用高效推理工具BMInf,支持1060以上显卡单卡推理。

安装

首先安装pytorch等基础依赖,再安装APEX以支持fp16:

pip install -r requirements.txt
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

考虑apex的安装容易发生问题,我们构建了对应的Docker容器,可以进行快速环境搭建。安装方式如下:

docker pull dmye/cpm:v0

参考运行指令如下:

:/CPM --name=cpm cpm:v0 ">
sudo docker run --gpus '"device=0,1"' -it -v 
   
    :/CPM  --name=cpm  cpm:v0

   

其中 为代码所在目录,-v进行文件目录挂载

注:感谢qhduan同学提供了基于TensorFlow的使用代码,用作Pytorch之外的备选。

模型

模型下载后文件夹的目录结构需设置如下:

.
├── 80000
│   ├── mp_rank_00_model_states.pt
│   └── mp_rank_01_model_states.pt
└── latest_checkpointed_iteration.txt

为保证下载文件的正确性,文件的checksum如下:

SHA1
71d6b6ad4f47b46724eb82c05da8fb9175e62a7d  80000/mp_rank_00_model_states.pt
42aa247a262e2011fa5e276f1a8389fad6d80edc  80000/mp_rank_01_model_states.pt
MD5
f3f6d2f7d84c6a45290a31dabf79ddac  80000/mp_rank_00_model_states.pt
b0e960be4b5226e759ae6fc5246f9160  80000/mp_rank_01_model_states.pt

使用

提供了命令行交互式生成:

bash scripts/generate_text.sh /path/to/CPM

如不使用交互式输入,可增加第二个参数,告知输入文本的位置

bash scripts/generate_text.sh /path/to/CPM example.txt

运行该脚本需要两块GPU,每张卡的GPU内存占用约为7GB。该项目主要基于 Megatron-LM 进行修改。模型的主体架构与GPT-2一致。

默认的模型并行参数为2,如果需要修改,可以使用change_mp.py,并调整generate_text.sh中的MPSIZEchange_mp.py的使用示例如下:

python change_mp.py /path/to/CPM MPSIZE

这里的/path/to/CPM为模型路径,MPSIZE为一个整数,可以为1或者2的倍数,结果会生成一个新的模型,存储路径为/path/to/CPM_MPSIZE

Tokenization

Tokenization实现主要在data_util/tokenization_gpt2.py,先对于文本进行分词,再使用 SentencePiece 得到 BPE 的结果。由于 SentencePiece 不能有效编码空格和换行符,在 BPE 之前,我们将文本中的空格和换行符替换为\u2582\u2583。生成文本的时候也会对应的把生成的\u2582\u2583替换回空格和换行符。

对应问题已解决。

分类任务零次学习(Zero-shot Learning)

提供了三个任务的零次学习任务脚本以供参考,包括OCNLI、TNEWS和IFLYTEK,数据下载链接。脚本使用方法如下:

# OCNLI
bash scripts/zero-shot-ocnli.sh /path/to/CPM /path/to/dataset
# TNEWS
bash scripts/zero-shot-tnews.sh /path/to/CPM /path/to/dataset
# IFLYTEK
bash scripts/zero-shot-iflytek.sh /path/to/CPM /path/to/dataset

TODO

  • 实验环境的docker镜像
  • 提供各个任务具体的使用模板
  • 公开技术报告
  • 模型并行数可动态调整
  • Fine-tune代码
  • 开源实验中使用的小规模模型参数

引用

@article{cpm-v1,
  title={CPM: A Large-scale Generative Chinese Pre-trained Language Model},
  author={Zhang, Zhengyan and Han, Xu, and Zhou, Hao, and Ke, Pei, and Gu, Yuxian and Ye, Deming and Qin, Yujia and Su, Yusheng and Ji, Haozhe and Guan, Jian and Qi, Fanchao and Wang, Xiaozhi and Zheng, Yanan and Zeng, Guoyang and Cao, Huanqi and Chen, Shengqi and Li, Daixuan and Sun, Zhenbo and Liu, Zhiyuan and Huang, Minlie and Han, Wentao and Tang, Jie and Li, Juanzi and Sun, Maosong},
  year={2020}
}
Owner
Tsinghua AI
Tsinghua AI
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022