Chinese Pre-Trained Language Models (CPM-LM) Version-I

Overview

CPM-Generate

为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告]

若您想使用CPM-1进行推理,我们建议使用高效推理工具BMInf,支持1060以上显卡单卡推理。

安装

首先安装pytorch等基础依赖,再安装APEX以支持fp16:

pip install -r requirements.txt
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

考虑apex的安装容易发生问题,我们构建了对应的Docker容器,可以进行快速环境搭建。安装方式如下:

docker pull dmye/cpm:v0

参考运行指令如下:

:/CPM --name=cpm cpm:v0 ">
sudo docker run --gpus '"device=0,1"' -it -v 
   
    :/CPM  --name=cpm  cpm:v0

   

其中 为代码所在目录,-v进行文件目录挂载

注:感谢qhduan同学提供了基于TensorFlow的使用代码,用作Pytorch之外的备选。

模型

模型下载后文件夹的目录结构需设置如下:

.
├── 80000
│   ├── mp_rank_00_model_states.pt
│   └── mp_rank_01_model_states.pt
└── latest_checkpointed_iteration.txt

为保证下载文件的正确性,文件的checksum如下:

SHA1
71d6b6ad4f47b46724eb82c05da8fb9175e62a7d  80000/mp_rank_00_model_states.pt
42aa247a262e2011fa5e276f1a8389fad6d80edc  80000/mp_rank_01_model_states.pt
MD5
f3f6d2f7d84c6a45290a31dabf79ddac  80000/mp_rank_00_model_states.pt
b0e960be4b5226e759ae6fc5246f9160  80000/mp_rank_01_model_states.pt

使用

提供了命令行交互式生成:

bash scripts/generate_text.sh /path/to/CPM

如不使用交互式输入,可增加第二个参数,告知输入文本的位置

bash scripts/generate_text.sh /path/to/CPM example.txt

运行该脚本需要两块GPU,每张卡的GPU内存占用约为7GB。该项目主要基于 Megatron-LM 进行修改。模型的主体架构与GPT-2一致。

默认的模型并行参数为2,如果需要修改,可以使用change_mp.py,并调整generate_text.sh中的MPSIZEchange_mp.py的使用示例如下:

python change_mp.py /path/to/CPM MPSIZE

这里的/path/to/CPM为模型路径,MPSIZE为一个整数,可以为1或者2的倍数,结果会生成一个新的模型,存储路径为/path/to/CPM_MPSIZE

Tokenization

Tokenization实现主要在data_util/tokenization_gpt2.py,先对于文本进行分词,再使用 SentencePiece 得到 BPE 的结果。由于 SentencePiece 不能有效编码空格和换行符,在 BPE 之前,我们将文本中的空格和换行符替换为\u2582\u2583。生成文本的时候也会对应的把生成的\u2582\u2583替换回空格和换行符。

对应问题已解决。

分类任务零次学习(Zero-shot Learning)

提供了三个任务的零次学习任务脚本以供参考,包括OCNLI、TNEWS和IFLYTEK,数据下载链接。脚本使用方法如下:

# OCNLI
bash scripts/zero-shot-ocnli.sh /path/to/CPM /path/to/dataset
# TNEWS
bash scripts/zero-shot-tnews.sh /path/to/CPM /path/to/dataset
# IFLYTEK
bash scripts/zero-shot-iflytek.sh /path/to/CPM /path/to/dataset

TODO

  • 实验环境的docker镜像
  • 提供各个任务具体的使用模板
  • 公开技术报告
  • 模型并行数可动态调整
  • Fine-tune代码
  • 开源实验中使用的小规模模型参数

引用

@article{cpm-v1,
  title={CPM: A Large-scale Generative Chinese Pre-trained Language Model},
  author={Zhang, Zhengyan and Han, Xu, and Zhou, Hao, and Ke, Pei, and Gu, Yuxian and Ye, Deming and Qin, Yujia and Su, Yusheng and Ji, Haozhe and Guan, Jian and Qi, Fanchao and Wang, Xiaozhi and Zheng, Yanan and Zeng, Guoyang and Cao, Huanqi and Chen, Shengqi and Li, Daixuan and Sun, Zhenbo and Liu, Zhiyuan and Huang, Minlie and Han, Wentao and Tang, Jie and Li, Juanzi and Sun, Maosong},
  year={2020}
}
Owner
Tsinghua AI
Tsinghua AI
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. C

Raphael Sourty 224 Nov 29, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022