Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Overview

Symbolic Learning to Optimize

This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Introduction

Recent studies on Learning to Optimize (L2O) suggest a promising path to automating and accelerating the optimization procedure for complicated tasks. Existing L2O models parameterize optimization rules by neural networks, and learn those numerical rules via meta-training. However, they face two common pitfalls: (1) scalability: the numerical rules represented by neural networks create extra memory overhead for applying L2O models, and limits their applicability to optimizing larger tasks; (2) interpretability: it is unclear what each L2O model has learned in its black-box optimization rule, nor is it straightforward to compare different L2O models in an explainable way. To avoid both pitfalls, this paper proves the concept that we can ``kill two birds by one stone'', by introducing the powerful tool of symbolic regression to L2O. In this paper, we establish a holistic symbolic representation and analysis framework for L2O, which yields a series of insights for learnable optimizers. Leveraging our findings, we further propose a lightweight L2O model that can be meta-trained on large-scale problems and outperformed human-designed and tuned optimizers. Our work is set to supply a brand-new perspective to L2O research.

Our approach:

First train a neural network (LSTM) based optimizer, then leverage the symbolic regression tool to trouble shoot and analyze the neural network based optimizer. The yielded symbolic rule serve as a light weight light-weight surrogate of the original optimizer.

Our main findings:

Example of distilled equations from DM model:

Example of distilled equations from RP model (they are simpler than the DM surrogates, and yet more effective for the optimization task):

Distilled symbolic rules fit the optimizer quite well:

The distilled symbolic rule and underlying rules

Distilled symbolic rules perform same optimization task well, compared with the original numerical optimizer:

The light weight symbolic rules are able to be meta-tuned on large scale (ResNet-50) optimizee and get good performance:

ss large scale optimizee

The symbolic regression passed the sanity checks in the optimization tasks:

Installation Guide

The installation require no special packages. The tensorflow version we adoped is 1.14.0, and the PyTorch version we adopted is 1.7.1.

Training Guide

The three files:

torch-implementation/l2o_train_from_scratch.py

torch-implementation/l2o_symbolic_regression_stage_2_3.py

torch-implementation/l2o_evaluation.py

are pipline scripts, which integrate the multi-stage experiments. The detailed usages are specified within these files. We offer several examples below.

  • In order to train a rnn-prop model from scratch on mnist classification problem setting with 200 epochs, each epoch with length 200, unroll length 20, batch size 128, learning rate 0.001 on GPU-0, run:

    python l2o_train_from_scratch.py -m tras -p mni -n 200 -l 200 -r 20 -b 128 -lr 0.001 -d 0

  • In order to fine-tune an L2O model on the CNN optimizee with 200 epochs, each epoch length 1000, unroll length 20, batch size 64, learning rate 0.001 on GPU-0, first put the .pth model checkpoint file (the training script above will automatically save it in a new folder under current directory) under the first (0-th, in the python index) location in __WELL_TRAINED__ specified in torch-implementation/utils.py , then run the following script:

    python l2o_train_from_scratch.py -m tune -pr 0 -p cnn -n 200 -l 1000 -r 20 -b 64 -lr 0.001 -d 0

  • In order to generate data for symbolic regression, if desire to obtain 50000 samples evaluated on MNIST classification problem, with optimization trajectory length of 300 steps, using GPU-3, then run:

    python l2o_evaluation.py -m srgen -p mni -l 300 -s 50000 -d 3

  • In order to distill equation from the previously saved offline SR dataset, check and run: torch-implementation/sr_train.py

  • In order to fine-tune SR equation, check and run: torch-implementation/stage023_mid2021_update.py

  • In order to convert distilled symbolic equation into latex readable form, check and run: torch-implementation/sr_test_get_latex.py.py

  • In order to calculate how good the symbolic is fitting the original model, we use the R2-scores; to compute it, check and run: torch-implementation/sr_test_cal_r2.py

  • In order to train and run the resnet-class optimizees, check and run: torch-implementation/run_resnet.py

There are also optional tensorflow implementations of L2O, including meta-training the two benchmarks used in this paper: DM and Rnn-prop L2O. However, all steps before generating offline datasets in the pipline is only supportable with torch implementations. To do symbolic regression with tensorflow implementation, you need to manually generate records (an .npy file) of shape [N_sample, num_feature+1], which concatenate the num_feature dimensional x (symbolic regresison input) and 1 dimensional y (output), containing N_sample samples. Once behavior dataset is ready, the following steps can be shared with torch implementation.

  • In order to train the tensorflow implementation of L2O, check and run: tensorflow-implementation/train_rnnprop.py, tensorflow-implementation/train_dm.py

  • In order to evaluate the tensorflow implementation of L2O and generate offline dataset for symbolic regression, check and run: tensorflow-implementation/evaluate_rnnprop.py, tensorflow-implementation/evaluate_dm.py.

Other hints

Meta train the DM/RP/RP_si models

run the train_optimizer() functionin torch-implementation/meta.py

Evaluate the optimization performance:

run theeva_l2o_optimizer() function in torch-implementation/meta.py

RP model implementations:

TheRPOptimizer in torch-implementation/meta.py

RP_si model implementations:

same as RP, set magic=0; or more diverse input can be enabled by setting grad_features="mt+gt+mom5+mom99"

DM model implementations:

DMOptimizer in torch-implementation/utils.py

SR implementations:

torch-implementation/sr_train.py

torch-implementation/sr_test_cal_r2.py

torch-implementation/sr_test_get_latex.py

other SR options and the workflow:

srUtils.py

Citation

comming soon.

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
TianyuQi 10 Dec 11, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023