This is the dataset and code release of the OpenRooms Dataset.

Overview

OpenRooms Dataset Release

Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying Yeh, Rui Zhu, Nitesh Gundavarapu, Jia Shi, Sai Bi, Zexiang Xu, Hong-Xing Yu, Kalyan Sunkavalli, Miloš Hašan, Ravi Ramamoorthi, Manmohan Chandraker

Dataset Overview

pipeline

This is the webpage for downloading the OpenRooms dataset. We will first introduce the rendered images and various ground-truths. Later, we will introduce how to render your own images based on the OpenRooms dataset creation pipeline. For each type of data, we offer two kinds of formats, zip files and individual folders, so that users can choose whether to download the whole dataset more efficiently or download individual folders for different scenes. To download the file, we recommend the tool Rclone, otherwise users may suffer from slow downloading speed and instability. If you have any questions, please email to [email protected].

We render six versions of images for all the scenes. Those rendered results are saved in 6 folders: main_xml, main_xml1, mainDiffMat_xml, mainDiffMat_xml1, mainDiffLight_xml and mainDiffLight_xml1. All 6 versions are built with the same CAD models. main_xml, mainDiffMat_xml, mainDiffLight_xml share one set of camera views while main_xml1, mainDiffMat_xml1 and mainDiffLight_xml1 share the other set of camera views. main_xml(1) and mainDiffMat_xml(1) have the same lighting but different materials while main_xml(1) and mainDiffLight_xml(1) have the same materials but different lighting. Both the lighting and material configuration of main_xml and main_xml1 are different. We believe this configuration can potentially help us develope novel applications for image editing. Two example scenes from main_xml, mainDiffMat_xml and mainDiffLight_xml are shown in the below.

config

News: We currently only release the rendered images of the dataset. All ground-truths will be released in a few days. The dataset creation pipeline will also be released soon.

Rendered Images and Ground-truths

All rendered images and the corresponding ground-truths are saved in folder data/rendering/data/. In the following, we will detail each type of rendered data and how to read and interpret them. Two example scenes with images and all ground-truths are included in Demo and Demo.zip.

  1. Images and Images.zip: The 480 × 640 HDR images im_*.hdr, which can be read with the python command.

    im = cv2.imread('im_1.hdr', -1)[:, :, ::-1]

    We render images for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1).

  2. Material and Material.zip: The 480 × 640 diffuse albedo maps imbaseColor_*.png and roughness map imroughness_*.png. Note that the diffuse albedo map is saved in sRGB space. To load it into linear RGB space, we can use the following python commands. The roughness map is saved in linear space and can be read directly.

    im = cv2.imread('imbaseColor_1.hdr')[:, :, ::-1]
    im = (im.astype(np.float32 ) / 255.0) ** (2.2)

    We only render the diffuse albedo maps and roughness maps for main_xml(1) and mainDiffMat_xml(1) because mainDiffLight_xml(1) share the same material maps with the main_xml(1).

  3. Geometry and Geometry.zip: The 480 × 640 normal maps imnomral_*.png and depth maps imdepth_*.dat. The R, G, B channel of the normal map corresponds to right, up, backward direction of the image plane. To load the depth map, we can use the following python commands.

    with open('imdepth_1.dat', 'rb') as fIn:
        # Read the height and width of depth
        hBuffer = fIn.read(4)
        height = struct.unpack('i', hBuffer)[0]
        wBuffer = fIn.read(4)
        width = struct.unpack('i', wBuffer)[0]
        # Read depth 
        dBuffer = fIn.read(4 * width * height )
        depth = np.array(
            struct.unpack('f' * height * width, dBuffer ), 
            dtype=np.float32 )
        depth = depth.reshape(height, width)

    We render normal maps for main_xml(1) and mainDiffMat_xml(1), and depth maps for main_xml(1).

  4. Mask and Mask.zip: The 480 × 460 grey scale mask immask_*.png for light sources. The pixel value 0 represents the region of environment maps. The pixel value 0.5 represents the region of lamps. Otherwise, the pixel value will be 1. We render the ground-truth masks for main_xml(1) and mainDiffLight_xml(1).

  5. SVLighting: The (120 × 16) × (160 × 32) per-pixel environment maps imenv_*.hdr. The spatial resolution is 120 x 160 while the environment map resolution is 16 x 32. To read the per-pixel environment maps, we can use the following python commands.

    # Read the envmap of resolution 1920 x 5120 x 3 in RGB format 
    env = cv2.imread('imenv_1', -1)[:, :, ::-1]
    # Reshape and permute the per-pixel environment maps
    env = env.reshape(120, 16, 160, 32, 3)
    env = env.transpose(0, 2, 1, 3, 4)

    We render per-pixel environment maps for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1). Since the total size of per-pixel environment maps is 4.0 TB, we do not provide an extra .zip format for downloading. Please consider using the tool Rclone if you hope to download all the per-pixel environment maps.

  6. SVSG and SVSG.zip: The ground-truth spatially-varying spherical Gaussian (SG) parameters imsgEnv_*.h5, computed from this optimization code. We generate the ground-truth SG parameters for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1). For the detailed format, please refer to the optimization code.

  7. Shading and Shading.zip: The 120 × 160 diffuse shading imshading_*.hdr computed by intergrating the per-pixel environment maps. We render shading for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1).

  8. SVLightingDirect and SVLightingDirect.zip: The (30 × 16) × (40 × 32) per-pixel environment maps with direct illumination imenvDirect_*.hdr only. The spatial resolution is 30 × 40 while the environment maps resolution is 16 × 32. The direct per-pixel environment maps can be load the same way as the per-pixel environment maps. We only render direct per-pixel environment maps for main_xml(1) and mainDiffLight_xml(1) because the direct illumination of mainDiffMat_xml(1) is the same as main_xml(1).

  9. ShadingDirect and ShadingDirect.zip: The 120 × 160 direct shading imshadingDirect_*.rgbe. To load the direct shading, we can use the following python command.

    im = cv2.imread('imshadingDirect_1.rgbe', -1)[:, :, ::-1]

    Again, we only render direct shading for main_xml(1) and mainDiffLight_xml(1)

  10. SemanticLabel and SemanticLabel.zip: The 480 × 640 semantic segmentation label imsemLabel_*.npy. We provide semantic labels for 45 classes of commonly seen objects and layout for indoor scenes. The 45 classes can be found in semanticLabels.txt. We only render the semantic labels for main_xml(1).

  11. LightSource and LightSource.zip: The light source information, including geometry, shadow and direct shading of each light source. In each scene directory, light_x directory corresponds to im_x.hdr, where x = 0, 1, 2, 3 ... In each light_x directory, you will see files with numbers in their names. The numbers correspond to the light source ID, i.e. if the IDs are from 0 to 4, then there are 5 light sources in this scene.

    • Geometry: We provide geometry annotation for windows and lamps box_*.dat for main_xml(1) only. To read the annotation, we can use the following python commmands.
      with open('box_0.dat', 'rb')  as fIn:
          info = pickle.load(fIn )
      There are 3 items saved in the dictionary, which we list blow.
      • isWindow: True if the light source is a window, false if the light source is a lamp.
      • box3D: The 3D bounding box of the light source, including center center, orientation xAxis, yAxis, zAxis and size xLen, yLen, zLen.
      • box2D: The 2D bounding box of the light source on the image plane x1, y1, x2, y2.
    • Mask: The 120 × 160 2D binary masks for light sources mask*.png. We only provide the masks for main_xml(1).
    • Direct shading: The 120 × 160 direct shading for each light source imDS*.rgbe. We provide the direction shading for main_xml(1) and mainDiffLight_xml(1).
    • Direct shading without occlusion: The 120 × 160 direct shading with outocclusion for each light source imNoOcclu*.rgbe. We provide the direction shading for main_xml(1) and mainDiffLight_xml(1).
    • Shadow: The 120 × 160 shadow maps for each light source imShadow*.png. We render the shadow map for main_xml(1) only.
  12. Friction and Friction.zip: The friction coefficients computed from our SVBRDF following the method proposed by Zhang et al. We compute the friction coefficients for main_xml(1) and mainDiffLight_xml(1)

Dataset Creation

  1. GPU renderer: The Optix-based GPU path tracer for rendering. Please refer to the github repository for detailed instructions.
  2. Tileable texture synthesis: The tielable texture synthesis code to make sure that the SVBRDF maps are tileable. Please refer to the github repository for more details.
  3. Spherical gaussian optimization: The code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. Please refer to the github repository for detailed instructions.

The CAD models, environment maps, materials and code required to recreate the dataset will be released soon.

Applications

  1. Inverse Rendering: Trained on our dataset, we achieved state-of-the-arts on some inverse rendering metrics, especially the lighting estimation. Please refer to our github repository for the training and testing code.
  2. Robotics: Our robotics applications will come soon.

Related Datasets

The OpenRooms dataset is built on the datasets listed below. We thank their creators for the excellent contribution. Please refer to prior datasets for license issues and terms of use if you hope to use them to create your own dataset.

  1. ScanNet dataset: The real 3D scans of indoor scenes.
  2. Scan2cad dataset: The alignment of CAD models to the scanned point clouds.
  3. Laval outdoor lighting dataset: HDR outdoor environment maps
  4. HDRI Haven lighting dataset: HDR outdoor environment maps
  5. PartNet dataset: CAD models
  6. Adobe Stock: High-quality microfacet SVBRDF texture maps. Please license materials from the Adobe website.
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022