A machine learning project that predicts the price of used cars in the UK

Overview

Car Price Prediction

Car Image

Image Credit: AA Cars

Project Overview

  • Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup.
  • Cleaned the data and built a model to help determine the price of cars on auction
  • Built a flask web app and deploy to cloud

Packages/Tools Used

  • Python Version: 3.9
  • BeautifulSoup
  • Request
  • Numpy
  • Matplotlib
  • Seaborn
  • Scikit-Learn

Data

The data was scraped from AA Cars. The data was scraped from multiple pages from the site and was stored as a csv file. The scraped data contains:

  • Name
  • Price
  • Year
  • Mileage
  • Engine
  • Transmisson

Data Cleaning

The features (columns) contained messy entries and were tidied using some custom functions. The following steps were taken.

  • Removed the duplicate rows in the data because it will affect the analysis.
  • Deleted thhe rows with missing values because they ae not up to 1% of the data.
  • Extracted the manufaturer of each car from the name column
  • Corrected some of the values in the manufacturers column by merging similar value and correcting those wrongly extracted.
  • Removed the pounds symbol and the comma in the values of the price column
  • Created an age column by substacting the values in the year column fom the current year, 2021. This is an easier column to work with.
  • Removed the commas, space and miles input in all the values of the mileage columns.
    • Corrected some of the values in the engine and transmission columns by merging similar value and correcting those wrongly extracted.

Exploratory Data Analysis

  • The count of the number of cars owned by each car manufacturer Car manufacturer distribution

  • The count of the number of cars from the different years Year distribution

  • The count of the number of cars with the diffrent car engine types Car engine distribution

  • The count of the number of cars with different car transmission types Car transmission distribution

  • The word cloud of all car manufacturers.

Car manufacturer wordcloud

Model Building

  • The 'name' and 'year' column were dropped because they are irrelevant.
  • The categorical features (name, colour and transmission) were transformed into numerical data and I scaled all the feature values to make all of them be in the same range
  • Linear Regression, Ridge Regression, Random Forest Regressor, Ada Boost Regressor and Support Vector Regressor models were all built.
  • Root mean squared error (RMSE) which is the square root of the sum of the difference between the true value and the predicted value was the metric used to evaluate the performance of the model.
  • The CatBoost Regressor model has the best performance and it was hypertuned using GridSearchCV to improve the performance.
  • The model was tested on new data and it gave a good output.

A flask web app is currently under construction

NB: I am open to constructive criticisms about this project

Owner
Victor Umunna
Victor Umunna
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
Pragmatic AI Labs 421 Dec 31, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021