Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Overview
Table of Content
  1. Introduction
  2. Getting Started
  3. Experiments

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images

Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. We propose a general framework without symmetry constraint, called LeMul, that effectively Learns from Multi-image datasets for more flexible and reliable unsupervised training of 3D reconstruction networks. It employs loose shape and texture consistency losses based on component swapping across views.

Details of the model architecture and experimental results can be found in our following paper.

@inproceedings{ho2021lemul,
      title={Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images},
      author={Long-Nhat Ho and Anh Tran and Quynh Phung and Minh Hoai},
      booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
      year={2021}
}

Please CITE our paper whenever our model implementation is used to help produce published results or incorporated into other software.

Getting Started

Datasets

  1. CelebA face dataset. Please download the original images (img_celeba.7z) from their website and run celeba_crop.py in data/ to crop the images.
  2. Synthetic face dataset generated using Basel Face Model. This can be downloaded using the script download_synface.sh provided in data/.
  3. Cat face dataset composed of Cat Head Dataset and Oxford-IIIT Pet Dataset (license). This can be downloaded using the script download_cat.sh provided in data/.
  4. CASIA WebFace dataset. You can download the original dataset from backup links such as the Google Drive link on this page. Decompress, and run casia_data_split.py in data/ to re-organize the images.

Please remember to cite the corresponding papers if you use these datasets.

Installation:

# clone the repo
git clone https://github.com/VinAIResearch/LeMul.git
cd LeMul

# install dependencies
conda env create -f environment.yml

Experiments

Training and Testing

Check the configuration files in experiments/ and run experiments, eg:

# Training
python run.py --config experiments/train_multi_CASIA.yml --gpu 0 --num_workers 4

# Testing
python run.py --config experiments/test_multi_CASIA.yml --gpu 0 --num_workers 4

Texture fine-tuning

With collection-style datasets such as CASIA, you can fine-tune the texture estimation network after training. Check the configuration file experiments/finetune_CASIA.yml as an example. You can run it with the command:

python run.py --config experiments/finetune_CASIA.yml --gpu 0 --num_workers 4

Pretrained Models

Pretrained models can be found here: Google Drive Please download and place pretrained models in ./pretrained folder.

Demo

After downloading pretrained models and preparing input image folder, you can run demo, eg:

python demo/demo.py --input demo/human_face_cropped --result demo/human_face_results --checkpoint pretrained/casia_checkpoint028.pth

Options:

  • --config path-to-training-config-file.yml: input the config file used in training (recommended)
  • --detect_human_face: enable automatic human face detection and cropping using MTCNN. You need to install facenet-pytorch before using this option. This only works on human face images
  • --gpu: enable GPU
  • --render_video: render 3D animations using neural_renderer (GPU is required)

To replicate the results reported in the paper with the model pretrained on the CASIA dataset, use the --detect_human_face option with images in folder demo/images/human_face and skip that flag with images in demo/images/human_face_cropped.

Owner
VinAI Research
VinAI Research
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022