Repository of 3D Object Detection with Pointformer (CVPR2021)

Overview

3D Object Detection with Pointformer

This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This work is developed on the top of MMDetection3D toolbox and includes the models and results on SUN RGB-D and ScanNet datasets in the paper.

Overall Structure

More models results on KITTI and nuScenes datasets will be released soon.

Installation and Usage

The code is developed with MMDetection3D v0.6.1 and works well with v0.14.0.

Dependencies

  • NVIDIA GPU + CUDA 10.2
  • Python 3.8 (Recommend to use Anaconda)
  • PyTorch == 1.8.0
  • mmcv-full == 1.3.7
  • mmdet == 2.11.0
  • mmsegmentation == 0.13.0

Installation

  1. Install dependencies following their guidelines.
  2. Clone and install mmdet3d in develop mode.
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
python setup.py develop
  1. Add the files in this repo into the directories in mmdet3d.

Training and Testing

Download the pretrained weights from Google Drive or Tsinghua Cloud and put them in the checkpoints folder. Use votenet_ptr_sunrgbd-3d-10class as an example:

# Training
bash -x tools/dist_train.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py 8

# Testing 
bash tools/dist_test.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py checkpoints/votenet_ptr_sunrgbd-3d-10class.pth 8 --eval mAP

Results

SUN RGB-D

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8343 0.9515 0.5556 0.7029
table 0.5353 0.8705 0.2344 0.4604
sofa 0.6588 0.9171 0.4979 0.6715
chair 0.7681 0.8700 0.5664 0.6703
toilet 0.9117 0.9931 0.5538 0.7103
desk 0.2458 0.8050 0.0754 0.3395
dresser 0.3626 0.8028 0.2357 0.4908
night_stand 0.6701 0.9020 0.4525 0.6196
bookshelf 0.3383 0.6809 0.0968 0.2624
bathtub 0.7821 0.8980 0.4259 0.5510
Overall 0.6107 0.8691 0.3694 0.5479

ScanNet

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4548 0.7930 0.1757 0.4435
bed 0.8839 0.9506 0.8006 0.8889
chair 0.9011 0.9386 0.7562 0.8136
sofa 0.8915 0.9794 0.6619 0.8041
table 0.6763 0.8714 0.4858 0.6971
door 0.5413 0.7216 0.2107 0.4283
window 0.4821 0.7021 0.1504 0.2979
bookshelf 0.5255 0.8701 0.4422 0.7273
picture 0.1815 0.3649 0.0748 0.1351
counter 0.6210 0.8654 0.2333 0.3846
desk 0.6859 0.9370 0.3774 0.6535
curtain 0.5522 0.7910 0.3156 0.4627
refrigerator 0.5215 0.9649 0.4028 0.7193
showercurtrain 0.6709 0.9643 0.1941 0.5000
toilet 0.9922 1.0000 0.8210 0.8793
sink 0.6361 0.7347 0.4119 0.5000
bathtub 0.8710 0.8710 0.8375 0.8387
garbagebin 0.4762 0.7264 0.2244 0.4604
Overall 0.6425 0.8359 0.4209 0.5908

For more details of experimetns please refer to the paper.

Acknowledgement

This code is based on MMDetection3D.

Citation

If you find our work is useful in your research, please consider citing:

@InProceedings{Pan_2021_CVPR,
    author    = {Pan, Xuran and Xia, Zhuofan and Song, Shiji and Li, Li Erran and Huang, Gao},
    title     = {3D Object Detection With Pointformer},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7463-7472}
}

@misc{pan20203d,
  title={3D Object Detection with Pointformer}, 
  author={Xuran Pan and Zhuofan Xia and Shiji Song and Li Erran Li and Gao Huang},
  year={2020},
  eprint={2012.11409},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
Owner
Zhuofan Xia
Zhuofan Xia
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022