Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

Overview

SentiBERT

Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/2005.04114

Model Architecture

Requirements

Environment

* Python == 3.6.10
* Pytorch == 1.1.0
* CUDA == 9.0.176
* NVIDIA GeForce GTX 1080 Ti
* HuggingFaces Pytorch (also known as pytorch-pretrained-bert & transformers)
* Stanford CoreNLP (stanford-corenlp-full-2018-10-05)
* Numpy, Pickle, Tqdm, Scipy, etc. (See requirements.txt)

Datasets

Datasets include:

* SST-phrase
* SST-5 (almost the same with SST-phrase)
* SST-3 (almost the same with SST-phrase)
* SST-2
* Twitter Sentiment Analysis (SemEval 2017 Task 4)
* EmoContext (SemEval 2019 Task 3)
* EmoInt (Joy, Fear, Sad, Anger) (SemEval 2018 Task 1c)

Note that there are no individual datasets for SST-5. When evaluating SST-phrase, the results for SST-5 should also appear.

File Architecture (Selected important files)

-- /examples/run_classifier_new.py                                  ---> start to train
-- /examples/run_classifier_dataset_utils_new.py                    ---> input preprocessed files to SentiBERT
-- /pytorch-pretrained-bert/modeling_new.py                         ---> detailed model architecture
-- /examples/lm_finetuning/pregenerate_training_data_sstphrase.py   ---> generate pretrained epochs
-- /examples/lm_finetuning/finetune_on_pregenerated_sstphrase.py    ---> pretrain on generated epochs
-- /preprocessing/xxx_st.py                                         ---> preprocess raw text and constituency tree
-- /datasets                                                        ---> datasets
-- /transformers (under construction)                               ---> RoBERTa part

Get Started

Preparing Environment

conda create -n sentibert python=3.6.10
conda activate sentibert

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch

cd SentiBERT/

wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip
unzip stanford-corenlp-full-2018-10-05.zip

export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/pytorch_pretrained_bert
export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/
export PYTHONPATH=$PYTHONPATH:XX/

Preprocessing

  1. Split the raw text and golden labels of sentiment/emotion datasets into xxx_train\dev\test.txt and xxx_train\dev\test_label.npy, assuming that xxx represents task name.
  2. Obtain tree information. There are totally three situtations.
  • For tasks except SST-phrase, SST-2,3,5, put the files into xxx_train\test.txt files into /stanford-corenlp-full-2018-10-05/. To get binary sentiment constituency trees, please run
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file xxx_train\test.txt -outputFormat json -ssplit.eolonly true -tokenize.whitespace true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/xxx_train\test.txt.json.

  • For SST-2, please use
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file sst2_train\dev_text.txt -outputFormat json -ssplit.eolonly true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/sst2_train\dev_text.txt.json.

  • For SST-phrase and SST-3,5, the tree information was already stored in sstphrase_train\test.txt.
  1. Run /datasets/xxx/xxx_st.py to clean, and store the text and label information in xxx_train\dev\test_text_new.txt and xxx_label_train\dev\test.npy. It also transforms the tree structure into matrices /datasets/xxx/xxx_train\dev\test_span.npy and /datasets/xxx/xxx_train\dev\test_span_3.npy. The first matrix is used as the range of constituencies in the first layer of our attention mechanism. The second matrix is used as the indices of each constituency's children nodes or subwords and itself in the second layer. Specifically, for tasks other than EmoInt, SST-phrase, SST-5 and SST-3, the command is like below:
cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train", "test" or "dev"

For EmoInt, the command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train" or "test"
        --domain joy                                        ---> "joy", "sad", "fear" or "anger". Used in EmoInt task

For SST-phrase, SST-5 and SST-3, since they already have tree information in sstphrase_train\test.txt. In this case, tree_dir should be /datasets/sstphrase/ or /datasets/sst-3/. The command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /datasets/xxx/ \                         ---> the location of unpreprocessed tree information    
        --stage train \                                     ---> "train" or "test"

Pretraining

  1. Generate epochs for preparation
cd /examples/lm_finetuning

python3 pregenerate_training_data_sstphrase.py \
        --train_corpus /datasets/sstphrase/sstphrase_train_text_new.txt \
        --data_dir /datasets/sstphrase/ \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /training_sstphrase \
        --epochs_to_generate 3 \
        --max_seq_len 128 \
  1. Pretrain the generated epochs
CUDA_VISIBLE_DEVICES=7 python3 finetune_on_pregenerated_sstphrase.py \
        --pregenerated_data /training_sstphrase \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /results/sstphrase_pretrain \
        --epochs 3

The pre-trained parameters were released here. [Google Drive]

Fine-tuning

Run run_classifier_new.py directly as follows:

cd /examples

CUDA_VISIBLE_DEVICES=7 python run_classifier_new.py \
  --task_name xxx \                              ---> task name
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir /datasets/xxx \                     ---> the same name as task_name
  --pretrain_dir /results/sstphrase_pretrain \   ---> the location of pre-trained parameters
  --bert_model bert-base-uncased \
  --max_seq_length 128 \
  --train_batch_size xxx \
  --learning_rate xxx \
  --num_train_epochs xxx \                                                          
  --domain xxx \                                 ---> "joy", "sad", "fear" or "anger". Used in EmoInt task
  --output_dir /results/xxx \                    ---> the same name as task_name
  --seed xxx \
  --para xxx                                     ---> "sentibert" or "bert": pretrained SentiBERT or BERT

Checkpoints

For reproducity and usability, we provide checkpoints and the original training settings to help you reproduce: Link of overall result folder: [Google Drive]

The implementation details and results are shown below:

Note: 1) BERT denotes BERT w/ Mean pooling. 2) The results of subtasks in EmoInt is (Joy: 68.90, 65.18, 4 epochs), (Anger: 68.17, 66.73, 4 epochs), (Sad: 66.25, 63.08, 5 epochs), (Fear: 65.49, 64.79, 5 epochs), respectively.

Models Batch Size Learning Rate Epochs Seed Results
SST-phrase
SentiBERT 32 2e-5 5 30 **68.98**
BERT* 32 2e-5 5 30 65.22
SST-5
SentiBERT 32 2e-5 5 30 **56.04**
BERT* 32 2e-5 5 30 50.23
SST-2
SentiBERT 32 2e-5 1 30 **93.25**
BERT 32 2e-5 1 30 92.08
SST-3
SentiBERT 32 2e-5 5 77 **77.34**
BERT* 32 2e-5 5 77 73.35
EmoContext
SentiBERT 32 2e-5 1 0 **74.47**
BERT 32 2e-5 1 0 73.64
EmoInt
SentiBERT 16 2e-5 4 or 5 77 **67.20**
BERT 16 2e-5 4 or 5 77 64.95
Twitter
SentiBERT 32 6e-5 1 45 **70.2**
BERT 32 6e-5 1 45 69.7

Analysis

Here we provide analysis implementation in our paper. We will focus on the evaluation of

  • local difficulty
  • global difficulty
  • negation
  • contrastive relation

In preprocessing part, we provide implementation to extract related information in the test set of SST-phrase and store them in

-- /datasets/sstphrase/swap_test_new.npy                   ---> global difficulty
-- /datasets/sstphrase/edge_swap_test_new.npy              ---> local difficulty
-- /datasets/sstphrase/neg_new.npy                         ---> negation
-- /datasets/sstphrase/but_new.npy                         ---> contrastive relation

In simple_accuracy_phrase(), we will provide statistical details and evaluate for each metric.

Some of the analysis results based on our provided checkpoints are selected and shown below:

Models Results
Local Difficulty
SentiBERT **[85.39, 60.80, 49.40]**
BERT* [83.00, 55.54, 31.97]
Negation
SentiBERT **[78.45, 76.25, 70.56]**
BERT* [75.04, 71.40, 68.77]
Contrastive Relation
SentiBERT **39.87**
BERT* 28.48

Acknowledgement

Here we would like to thank for BERT/RoBERTa implementation of HuggingFace and sentiment tree parser of Stanford CoreNLP. Also, thanks for the dataset release of SemEval. To confirm the privacy rule of SemEval task organizer, we only choose the publicable datasets of each task.

Citation

Please cite our ACL paper if this repository inspired your work.

@inproceedings{yin2020sentibert,
  author    = {Yin, Da and Meng, Tao and Chang, Kai-Wei},
  title     = {{SentiBERT}: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics},
  booktitle = {Proceedings of the 58th Conference of the Association for Computational Linguistics, {ACL} 2020, Seattle, USA},
  year      = {2020},
}

Contact

  • Due to the difference of environment, the results will be a bit different. If you have any questions regarding the code, please create an issue or contact the owner of this repository.
Owner
Da Yin
Da Yin
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021