This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

Related tags

Deep LearningPFD_Net
Overview

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer

Python >=3.6 PyTorch >=1.6

This repo is the official implementation of "Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer(PFD), Tao Wang, Hong Liu, Pinghao Song, Tianyu Guo& Wei Shi" in PyTorch.

Pipeline

framework

Dependencies

  • timm==0.3.2

  • torch==1.6.0

  • numpy==1.20.2

  • yacs==0.1.8

  • opencv_python==4.5.2.54

  • torchvision==0.7.0

  • Pillow==8.4.0

Installation

pip install -r requirements.txt

If you find some packages are missing, please install them manually.

Prepare Datasets

mkdir data

Please download the dataset, and then rename and unzip them under the data

data
|--market1501
|
|--Occluded_Duke
|
|--Occluded_REID
|
|--MSMT17
|
|--dukemtmcreid

Prepare ViT Pre-trained and HRNet Pre-trained Models

mkdir data

The ViT Pre-trained model can be found in ViT_Base, The HRNet Pre-trained model can be found in HRNet, please download it and put in the './weights' dictory.

Training

We use One GeForce GTX 1080Ti GPU for Training Before train the model, please modify the parameters in config file, please refer to Arguments in TransReID

python occ_train.py --config_file {config_file path}
#example
python occ_train.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Test the model

First download the Occluded-Duke model:Occluded-Duke

To test on pretrained model on Occ-Duke: Modify the pre-trained model path (PRETRAIN_PATH:ViT_Base, POSE_WEIGHT:HRNet, WEIGHT:Occluded-Duke) in yml, and then run:

## OccDuke for example
python test.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Occluded-Duke Results

Model Image Size Rank-1 mAP
HOReID 256*128 55.1 43.8
PAT 256*128 64.5 53.6
TransReID 256*128 64.2 55.7
PFD 256*128 67.7 60.1
TransReID* 256*128 66.4 59.2
PFD* 256*128 69.5 61.8

$*$means the encoder is with a small step sliding-window setting

Occluded-REID Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 81.6 72.1
PFD 256*128 79.8 81.3

Market-1501 Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 95.4 88.0
TransReID 256*128 95.4 88.0
PFD 256*128 95.5 89.6

Citation

If you find our work useful in your research, please consider citing this paper! (preprint version will be available soon)

@inproceedings{wang2022pfd,
  Title= {Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer},
  Author= {Tao Wang, Hong Liu, Pinhao Song, Tianyu Guo and Wei Shi},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

Our code is extended from the following repositories. We thank the authors for releasing the codes.

License

This project is licensed under the terms of the MIT license.

You might also like...
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Comments
  • 精度达不到论文里面的数据

    精度达不到论文里面的数据

    作者您好,我在1501上测试了一下 就改了 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/configs/Market1501/skeleton_pfd.yml 这个文件,里面的参数并没有改动 改了权重的路径,和文件夹的路径 其他都没变,如何训练300轮次后 我选择最高300轮的 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth 去测试 结果是 : 2021-12-28 18:23:39,417 PFDreid.test INFO: Validation Results 2021-12-28 18:23:39,417 PFDreid.test INFO: mAP: 88.2% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-1 :94.8% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-5 :98.3% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-10 :99.0% 达不到论文的95.5 甚至不如TransReID的精度 ??? 您能看看是为什么嘛?

    MODEL: PRETRAIN_CHOICE: 'imagenet' PRETRAIN_PATH: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/jx_vit_base_p16_224-80ecf9dd.pth' METRIC_LOSS_TYPE: 'triplet' IF_LABELSMOOTH: 'on' IF_WITH_CENTER: 'no' NAME: 'skeleton_transformer' NO_MARGIN: True DEVICE_ID: ('2') TRANSFORMER_TYPE: 'vit_base_patch16_224_TransReID' STRIDE_SIZE: [16, 16]

    SIE_CAMERA: True SIE_COE: 3.0 JPM: True RE_ARRANGE: True NUM_HEAD: 8 DECODER_DROP_RATE: 0.1 DROP_FIRST: False NUM_DECODER_LAYER: 6 QUERY_NUM: 17 POSE_WEIGHT: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/pose_hrnet_w48_384x288.pth' SKT_THRES: 0.2

    INPUT: SIZE_TRAIN: [256, 128] SIZE_TEST: [256, 128] PROB: 0.5 # random horizontal flip RE_PROB: 0.5 # random erasing PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5]

    DATASETS: NAMES: ('market1501') ROOT_DIR: ('/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/data/')

    DATALOADER: SAMPLER: 'softmax_triplet' NUM_INSTANCE: 4 NUM_WORKERS: 8

    SOLVER: OPTIMIZER_NAME: 'SGD' MAX_EPOCHS: 300 BASE_LR: 0.008 IMS_PER_BATCH: 64 WARMUP_METHOD: 'linear' LARGE_FC_LR: False CHECKPOINT_PERIOD: 60 LOG_PERIOD: 50 EVAL_PERIOD: 30 WEIGHT_DECAY: 1e-4 WEIGHT_DECAY_BIAS: 1e-4 BIAS_LR_FACTOR: 2

    TEST: EVAL: True IMS_PER_BATCH: 256 RE_RANKING: False WEIGHT: "/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth" #put your own pth NECK_FEAT: 'before' FEAT_NORM: 'yes'

    OUTPUT_DIR: 'logs/Market/pfd_net'

    opened by zqx951102 3
  • 使用您的Occluded-Duke的预训练模型达不到文中的结果

    使用您的Occluded-Duke的预训练模型达不到文中的结果

    作者您好: 感谢你做出如此优秀的工作,我按照reademe的要求在使用您的Occluded-Duke的预训练模型时,发现达不到文中所说的结果,下图是我测试的结果: image 跟论文中的结果大约相差2%,我使用的时pytorch1.7.1, cuda10.2, python3.7.13;所以我想知道这是什么原因造成的呢? 期待您的回复。

    opened by changshuowang 2
  • There is no Occlude-REID data loader

    There is no Occlude-REID data loader

    Good work! I respect your contributions!

    I want to testing Occluded-REID dataset in your code, but there is no loader. In your code, dataset.make_dataloader.py, line 14 "from .occ_reid import Occluded_REID"

    Would you share this code?

    thank you

    opened by intlabSeJun 4
Releases(V1.0.0)
Owner
Tao Wang
Tao Wang
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022