[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

Related tags

Deep LearningCaaM
Overview

CaaM

This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, which will be further refined and checked recently.

0. Bibtex

If you find our codes helpful, please cite our paper:

@inproceedings{wang2021causal,
  title={Causal Attention for Unbiased Visual Recognition},
  author={Wang, Tan and Zhou, Chang and Sun, Qianru and Zhang, Hanwang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

1. Preparation

  1. Installation: Python3.6, Pytorch1.6, tensorboard, timm(0.3.4), scikit-learn, opencv-python, matplotlib, yaml
  2. Dataset:
  1. Please remember to change the data path in the config file.

2. Evaluation:

  1. For ResNet18 on NICO dataset
CUDA_VISIBLE_DEVICES=0 python train.py -cfg conf/ours_resnet18_multilayer2_bf0.02_noenv_pw5e5.yaml -debug -gpu -eval pretrain_model/nico_resnet18_ours_caam-best.pth

The results will be: Val Score: 0.4638461470603943 Test Score: 0.4661538600921631

  1. For T2T-ViT7 on NICO dataset
CUDA_VISIBLE_DEVICES=0,1 python train.py -cfg conf/ours_t2tvit7_bf0.02_s4_noenv_pw5e4.yaml -debug -gpu -multigpu -eval pretrain_model/nico_t2tvit7_ours_caam-best.pth

The results will be: Val Score: 0.3799999952316284 Test Score: 0.3761538565158844

  1. For ImageNet-9 dataset

Similarly, the pretrained model is in pretrain_model. Please note that on ImageNet9, we report the best performance for the 3 metrics in our paper. The pretrained model is for bias and unbias and we did not save the model for the best ImageNet-A.

3. Train

To perform training, please run the sh file in scripts. For example:

sh scripts/run_baseline_resnet18.sh

4. An interesting finding

Recently I found an interesting thing by accident. The mixup added on the baseline model would not bring much performance improvements (see Table 1. in the main paper). However, when performing mixup based on our CaaM, the performance can be further boosted.

Specifically, you can active the mixup by:

sh scripts/run_ours_resnet18_mixup.sh

This can make our CaaM achieve about 50~51% Val & Test accuracy on NICO dataset.

Acknowledgement

Special thanks to the authors of ReBias and IRM, and the datasets used in this research project.

If you have any question or find any bug, please kindly email me.

Owner
Wang Tan
Ph.D. student of MreaL Lab, NTU
Wang Tan
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022