Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

Overview

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo

Block diagram of FCL-taco2, where the decoder generates mel-spectrograms in AR mode within each phoneme and is shared for all phonemes.

πŸ’¬ Huawei Noah's Ark Lab is recruiting interns on speech processing fields, if you're interested, you're welcome to contact Dr. Deng: [email protected]

Training and inference scripts for FCL-taco2

Environment

  • python 3.6.10
  • torch 1.3.1
  • chainer 6.0.0
  • espnet 8.0.0
  • apex 0.1
  • numpy 1.19.1
  • kaldiio 2.15.1
  • librosa 0.8.0

Training and inference:

  • Step1. Data preparation & preprocessing
  1. Download LJSpeech

  2. Unpack downloaded LJSpeech-1.1.tar.bz2 to /xx/LJSpeech-1.1

  3. Obtain the forced alignment information by using Montreal forced aligner tool. Or you can download our alignment results, then unpack it to /xx/TextGrid

  4. Preprocess the dataset to extract mel-spectrograms, phoneme duration, pitch, energy and phoneme sequence by:

     python preprocessing.py --data-root /xx/LJSpeech-1.1 --textgrid-root /xx/TextGrid
    
  • Step2. Model training
  1. Training teacher model FCL-taco2-T:

     ./teacher_model_training.sh
    
  2. Training student model FCL-taco2-S:

     ./student_model_training.sh
    
  3. Parallel-WaveGAN vocoder training: follow instructions at here. You can also download the pre-trained PWG vocoder, and put the PWG model under the directory "vocoder".

  • Step3. Model evaluation
  1. FCL-taco2-T evaluation:

     ./inference_teacher.sh
    
  2. FCL-taco2-S evaluation:

     ./inference_student.sh
    

Citation

If the code is used in your research, please star our repo and cite our paper:

@inproceedings{wang2021fcl,
  title={Fcl-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech Synthesis},
  author={Wang, Disong and Deng, Liqun and Zhang, Yang and Zheng, Nianzu and Yeung, Yu Ting and Chen, Xiao and Liu, Xunying and Meng, Helen},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5714--5718},
  year={2021},
  organization={IEEE}
}
Owner
Disong Wang
PhD student @ CUHK, focus on voice conversion, speech synthesis, speech recognition, etc.
Disong Wang
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs Β» Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния

ML-MathMethods-Test ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния. ВычислСниС основных статистик, Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Ρ€Π°Π·Π»

Stas Ivanovskii 1 Jan 06, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022