Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Overview

Informative-tracking-benchmark

Informative tracking benchmark (ITB)

  • higher diversity. It contains 9 representative scenarios and 180 diverse videos.
  • more effective. Sequences are carefully selected based on chellening level, discriminative strength, and density of appearance variations.
  • more efficient. It is constructed with 7% out of 1.2 M frames allows saving 93% of evaluation time (3,625 seconds on informative benchmark vs. 50,000 seconds on all benchmarks) for a real-time tracker (24 frames per second).
  • more rigorous comparisons. (All the baseline methods are re-evaluated using the same protocol, e.g., using the same training set and finetuning hyper-parameters on a specified validate set).

An Informative Tracking Benchmark, Xin Li, Qiao Liu, Wenjie Pei, Qiuhong Shen, Yaowei Wang, Huchuan Lu, Ming-Hsuan Yang [Paper]

News:

  • 2021.12.09 The informative tracking benchmark is released.

Introduction

Along with the rapid progress of visual tracking, existing benchmarks become less informative due to redundancy of samples and weak discrimination between current trackers, making evaluations on all datasets extremely time-consuming. Thus, a small and informative benchmark, which covers all typical challenging scenarios to facilitate assessing the tracker performance, is of great interest. In this work, we develop a principled way to construct a small and informative tracking benchmark (ITB) with 7% out of 1.2 M frames of existing and newly collected datasets, which enables efficient evaluation while ensuring effectiveness. Specifically, we first design a quality assessment mechanism to select the most informative sequences from existing benchmarks taking into account 1) challenging level, 2) discriminative strength, 3) and density of appearance variations. Furthermore, we collect additional sequences to ensure the diversity and balance of tracking scenarios, leading to a total of 20 sequences for each scenario. By analyzing the results of 15 state-of-the-art trackers re-trained on the same data, we determine the effective methods for robust tracking under each scenario and demonstrate new challenges for future research direction in this field.

Dataset Samples

Dataset Download (8.15 GB) and Preparation

[GoogleDrive] [BaiduYun (Code: intb)]

After downloading, you should prepare the data in the following structure:

ITB
 |——————Scenario_folder1
 |        └——————seq1
 |        |       └————xxxx.jpg
 |        |       └————groundtruth.txt
 |        └——————seq2
 |        └——————...
 |——————Scenario_folder2
 |——————...
 └------ITB.json

Both txt and json annotation files are provided.

Evaluation ToolKit

The evaluation tookit is wrote in python. We also provide the interfaces to the pysot and pytracking tracking toolkits.

You may follow the below steps to evaluate your tracker.

  1. Download this project:

    git clone [email protected]:XinLi-zn/Informative-tracking-benchmark.git
    
  2. Run your method with one of the following ways:

    base interface.
    Integrating your method into the base_toolkit/test_tracker.py file and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python test_tracker.py --dataset ITB --dataset_path /path-to/ITB
    

    pytracking interface. (pytracking link)
    Merging the files in pytracking_toolkit/pytracking to the counterpart files in your pytracking toolkit and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python run_tracker.py tracker_name tracker_parameter  --dataset ITB --descrip
    

    pysot interface. (pysot link)
    Putting the pysot_toolkit into your tracker folder and adding your tracker to the 'test.py' file in the pysot_toolkit. Then run the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python -u pysot_toolkit/test.py --dataset ITB --name 'tracker_name' 
    
  3. Compute the performance score:

    Here, we use the performance analysis codes in the pysot_toolkit to compute the score. Putting the pysot_toolkit into your tracker folder and use the below commmand to compute the performance score.

    python eval.py -p ./results-example/  -d ITB -t transt
    

    The above command computes the score of the results put in the folder of './pysot_toolkit/results-example/ITB/transt*/*.txt' and it shows the overall results and the results of each scenario.

Acknowledgement

We select several sequences with the hightest quality score (defined in the paper) from existing tracking datasets including OTB2015, NFS, UAV123, NUS-PRO, VisDrone, and LaSOT. Many thanks to their great work!

  • [OTB2015 ] Object track-ing benchmark. Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. IEEE TPAMI, 2015.
  • [ NFS ] Need for speed: A benchmark for higher frame rate object tracking. Kiani Galoogahi, Hamed and Fagg, et al. ICCV 2017.
  • [ UAV123 ] A benchmark and simulator for uav tracking. Mueller, Matthias and Smith, Neil and Ghanem, Bernard. ECCV 2016.
  • [NUS-PRO ] Nus-pro: A new visual tracking challenge. Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, Shuicheng Yan. PAMI 2015.
  • [VisDrone] Visdrone-det2018: The vision meets drone object detection in image challenge results. Pengfei Zhu, Longyin Wen, et al. ECCVW 2018.
  • [ LaSOT ] Lasot: A high-quality benchmark for large-scale single object tracking. Heng Fan, Liting Lin, et al. CVPR 2019.

Contact

If you have any questions about this benchmark, please feel free to contact Xin Li at [email protected].

Owner
Xin Li
Xin Li
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023