PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Overview

Soft DTW Loss Function for PyTorch in CUDA

This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch supported computation, CUDA-friendly, and feasible to use as a final loss. I can confirm that you can train a (sequential) model with this as a final loss! The following image shows training logs of a TTS model using the Soft-DTW Loss Function.

There are some previous implementations:

  1. mblondel's soft-dtw
  2. lyprince's sdtw_pytorch
  3. Maghoumi's pytorch-softdtw-cuda

But they are either not supported by CUDA-friendly batch computation or not considering the jacobean w.r.t input matrix, which is necessary to be used as a final loss in recent deep learning frameworks. In the current implementation, all conditions are satisfied.

Usage

Same as Maghoumi's pytorch-softdtw-cuda:

from sdtw_cuda_loss import SoftDTW

# Create the sequences
batch_size, len_x, len_y, dims = 8, 15, 12, 5
x = torch.rand((batch_size, len_x, dims), requires_grad=True)
y = torch.rand((batch_size, len_y, dims))

# Create the "criterion" object
sdtw = SoftDTW(use_cuda=True, gamma=0.1)

# Compute the loss value
loss = sdtw(x, y)  # Just like any torch.nn.xyzLoss()

# Aggregate and call backward()
loss.mean().backward()

But the backward will compute the gradient w.r.t input target sequence x (which is not considered in the previous work).

Note

In the current implementation, only use_cuda=True is supported. But you can easily implement the CPU version as in Maghoumi's pytorch-softdtw-cuda.

Citation

@misc{lee2021soft_dtw_loss,
  author = {Lee, Keon},
  title = {Soft-DTW-Loss},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/Soft-DTW-Loss}}
}
You might also like...
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

[CVPR 2022] Official code for the paper:
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Comments
  • Does this supports multi-gpu training?

    Does this supports multi-gpu training?

    Thanks for sharing impl of soft-dtw, I can use it in single-gpu env,but can't use it in multi-gpu envs.Currently, it doesn't support multi-gpu training?

    opened by mayfool 2
  • how to use dtw-loss to fit a curve?

    how to use dtw-loss to fit a curve?

    hello, I tried to fit a curve (discrete points) using Soft-DTW-Loss as a loss function. But the loss does not converge to the exact result in the end. Is there something wrong with the way I am using it? The code is as follows:

    if name == "main":

    batch_size = 1
    len_x = 15
    len_predict = 10
    dims = 1
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    x = torch.unsqueeze(torch.linspace(1, 4, steps=len_x, requires_grad=True), dim=0)
    y = x ** 2
    y = y.view(1, len_x, 1)
    x = x.view(1, len_x, 1)
    
    #(batch,length,dims)---->(1,15,2)
    truth_points = torch.cat((y, x), dim=2).cuda()
    
    #(1,20)
    input = torch.unsqueeze(torch.linspace(1, 4, steps=len_predict*2, requires_grad=True), dim=0).cuda()
    
    
    class testNN(torch.nn.Module):
        def __init__(self):
            super(testNN, self).__init__()
            self.layer = nn.Sequential(
                nn.Linear(20, 50),
                nn.ReLU(),
                nn.Linear(50, 200),
                nn.ReLU(),
                nn.Linear(200, 50),
                nn.ReLU(),
                nn.Linear(50, 20),
                nn.ReLU(),
            )
        def forward(self, x):
            x = self.layer(x)
            return x
    
    
    test = testNN()
    test = test.to(device)
    
    loss_function = SoftDTW(use_cuda=True, gamma=0.01, normalize=False)
    optimizer = torch.optim.Adam(test.parameters(), lr=0.01)
    
    
    for epoch in range(1000):
    
    
        predict = test(input)
        #(1,20) reshape to (1,10,2)
        predict = predict.reshape(1, len_predict, 2)
        loss = loss_function(predict, truth_points)
        optimizer.zero_grad()
        loss.mean().backward(retain_graph=True)
        optimizer.step()
    
    
        if epoch % 10 == 0:
            print("epoch : %d | loss : %f" % (epoch, loss))
            plt_predict = predict.cpu().detach().numpy()
            # print(plt_predict)
            plt_predict = plt_predict.reshape(1, len_predict, 2)
            print(plt_predict[0, :, 0])
            print(plt_predict[0, :, 1])
    
    opened by visionlyx 0
Releases(v1.0.0)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022