Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Overview

Lossy Compression for Lossless Prediction License: MIT Python 3.8+

Using: Using

Training: Training

This repostiory contains our implementation of the paper: Lossy Compression for Lossless Prediction. That formalizes and empirically inverstigates unsupervised training for task-specific compressors.

Using the compressor

Using

If you want to use our compressor directly the easiest is to use the model from torch hub as seen in the google colab (or notebooks/Hub.ipynb) or th example below.

Installation details
pip install torch torchvision tqdm numpy compressai sklearn git+https://github.com/openai/CLIP.git

Using pytorch>1.7.1 : CLIP forces pytorch version 1.7.1, this is because it needs this version to use JIT. If you don't need JIT (no JIT by default) you can alctually use more recent versions of torch and torchvision pip install -U torch torchvision. Make sure to update after having isntalled CLIP.


import time

import torch
from sklearn.svm import LinearSVC
from torchvision.datasets import STL10

DATA_DIR = "data/"

# list available compressors. b01 compresses the most (b01 > b005 > b001)
torch.hub.list('YannDubs/lossyless:main') 
# ['clip_compressor_b001', 'clip_compressor_b005', 'clip_compressor_b01']

# Load the desired compressor and transformation to apply to images (by default on GPU if available)
compressor, transform = torch.hub.load('YannDubs/lossyless:main','clip_compressor_b005')

# Load some data to compress and apply transformation
stl10_train = STL10(
    DATA_DIR, download=True, split="train", transform=transform
)
stl10_test = STL10(
    DATA_DIR, download=True, split="test", transform=transform
)

# Compresses the datasets and save them to file (this requires GPU)
# Rate: 1506.50 bits/img | Encoding: 347.82 img/sec
compressor.compress_dataset(
    stl10_train,
    f"{DATA_DIR}/stl10_train_Z.bin",
    label_file=f"{DATA_DIR}/stl10_train_Y.npy",
)
compressor.compress_dataset(
    stl10_test,
    f"{DATA_DIR}/stl10_test_Z.bin",
    label_file=f"{DATA_DIR}/stl10_test_Y.npy",
)

# Load and decompress the datasets from file the datasets (does not require GPU)
# Decoding: 1062.38 img/sec
Z_train, Y_train = compressor.decompress_dataset(
    f"{DATA_DIR}/stl10_train_Z.bin", label_file=f"{DATA_DIR}/stl10_train_Y.npy"
)
Z_test, Y_test = compressor.decompress_dataset(
    f"{DATA_DIR}/stl10_test_Z.bin", label_file=f"{DATA_DIR}/stl10_test_Y.npy"
)

# Downstream STL10 evaluation. Accuracy: 98.65% | Training time: 0.5 sec
clf = LinearSVC(C=7e-3)
start = time.time()
clf.fit(Z_train, Y_train)
delta_time = time.time() - start
acc = clf.score(Z_test, Y_test)
print(
    f"Downstream STL10 accuracy: {acc*100:.2f}%.  \t Training time: {delta_time:.1f} "
)

Minimal training code

Training

If your goal is to look at a minimal version of the code to simply understand what is going on, I would highly recommend starting from notebooks/minimal_compressor.ipynb (or google colab link above). This is a notebook version of the code provided in Appendix E.7. of the paper, to quickly train and evaluate our compressor.

Installation details
  1. pip install git+https://github.com/openai/CLIP.git
  2. pip uninstall -y torchtext (probably not necessary but can cause issues if got installed as wrong pytorch version)
  3. pip install scikit-learn==0.24.2 lightning-bolts==0.3.4 compressai==1.1.5 pytorch-lightning==1.3.8

Using pytorch>1.7.1 : CLIP forces pytorch version 1.7.1 you should be able to use a more recent versions. E.g.:

  1. pip install git+https://github.com/openai/CLIP.git
  2. pip install -U torch torchvision scikit-learn lightning-bolts compressai pytorch-lightning

Results from the paper

We provide scripts to essentially replicate some results from the paper. The exact results will be a little different as we simplified and cleaned some of the code to help readability. All scripts can be found in bin and run using the command bin/*/<experiment>.sh.

Installation details
  1. Clone repository
  2. Install PyTorch >= 1.7
  3. pip install -r requirements.txt

Other installation

  • For the bare minimum packages: use pip install -r requirements_mini.txt instead.
  • For conda: use conda env update --file requirements/environment.yaml.
  • For docker: we provide a dockerfile at requirements/Dockerfile.

Notes

  • CLIP forces pytorch version 1.7.1, this is because it needs this version to use JIT. We don't use JIT so you can alctually use more recent versions of torch and torchvision pip install -U torch torchvision.
  • For better logging: hydra and pytorch lightning logging don't work great together, to have a better logging experience you should comment out the folowing lines in pytorch_lightning/__init__.py :
if not _root_logger.hasHandlers():
     _logger.addHandler(logging.StreamHandler())
     _logger.propagate = False

Test installation

To test your installation and that everything works as desired you can run bin/test.sh, which will run an epoch of BICNE and VIC on MNIST.


Scripts details

All scripts can be found in bin and run using the command bin/*/<experiment>.sh. This will save all results, checkpoints, logs... The most important results (including summary resutls and figures) will be saved at results/exp_<experiment>. Most important are the summarized metrics results/exp_<experiment>*/summarized_metrics_merged.csv and any figures results/exp_<experiment>*/*.png.

The key experiments that that do not require very large compute are:

  • VIC/VAE on rotation invariant Banana distribution: bin/banana/banana_viz_VIC.sh
  • VIC/VAE on augmentation invariant MNIST: bin/mnist/augmist_viz_VIC.sh
  • CLIP experiments: bin/clip/main_linear.sh

By default all scripts will log results on weights and biases. If you have an account (or make one) you should set your username in conf/user.yaml after wandb_entity:, the passwod should be set directly in your environment variables. If you prefer not logging, you can use the command bin/*/<experiment>.sh -a logger=csv which changes (-a is for append) the default wandb logger to a csv logger.

Generally speaking you can change any of the parameters either directly in conf/**/<file>.yaml or by adding -a to the script. We are using Hydra to manage our configurations, refer to their documentation if something is unclear.

If you are using Slurm you can submit directly the script on servers by adding a config file under conf/slurm/<myserver>.yaml, and then running the script as bin/*/<experiment>.sh -s <myserver>. For example configurations files for slurm see conf/slurm/vector.yaml or conf/slurm/learnfair.yaml. For more information check the documentation from submitit's plugin which we are using.


VIC/VAE on rotation invariant Banana

Command:

bin/banana/banana_viz_VIC.sh

The following figures are saved automatically at results/exp_banana_viz_VIC/**/quantization.png. On the left we see the quantization of the Banana distribution by a standard compressor (called VAE in code but VC in paper). On the right, by our (rotation) invariant compressor (VIC).

Standard compression of Banana Invariant compression of Banana

VIC/VAE on augmentend MNIST

Command:

bin/banana/augmnist_viz_VIC.sh

The following figure is saved automatically at results/exp_augmnist_viz_VIC/**/rec_imgs.png. It shows source augmented MNIST images as well as the reconstructions using our invariant compressor.

Invariant compression of augmented MNIST

CLIP compressor

Command:

bin/clip/main_small.sh

The following table comes directly from the results which are automatically saved at results/exp_clip_bottleneck_linear_eval/**/datapred_*/**/results_predictor.csv. It shows the result of compression from our CLIP compressor on many datasets.

Cars196 STL10 Caltech101 Food101 PCam Pets37 CIFAR10 CIFAR100
Rate [bits] 1471 1342 1340 1266 1491 1209 1407 1413
Test Acc. [%] 80.3 98.5 93.3 83.8 81.1 88.8 94.6 79.0

Note: ImageNet is too large for training a SVM using SKlearn. You need to run MLP evaluation with bin/clip/clip_bottleneck_mlp_eval. Also you have to download ImageNet manually.

Cite

You can read the full paper here. Please cite our paper if you use our model:

@inproceedings{
    dubois2021lossy,
    title={Lossy Compression for Lossless Prediction},
    author={Yann Dubois and Benjamin Bloem-Reddy and Karen Ullrich and Chris J. Maddison},
    booktitle={Neural Compression: From Information Theory to Applications -- Workshop @ ICLR 2021},
    year={2021},
    url={https://arxiv.org/abs/2106.10800}
}
You might also like...
PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Open-source code for Generic Grouping Network (GGN, CVPR 2022)
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Comments
  • Karen's experiments

    Karen's experiments

    Changes:

    • val_equivalence flag allows to have different equivalences at test time -> if used will automatically set is_augment_val=True
    • adding the option of having joint augmentations (specific. rotation)
    opened by KarenUllrich 2
  • Ever Use a Projection Head?

    Ever Use a Projection Head?

    Hi Yann,

    Did you ever use a project head [1] (i.e., a multi-layer perceptron) to transform the output of the encoder?

    If I understand correctly, you directly feed the output of the encoder (e.g., a pre-trained ResNet model) into the rate estimator?

    Thanks!

    Reference:

    [1] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.

    opened by DarrenZhang01 1
  • Efficient way to integrate lossyless into a PyTorch Dataset subclass

    Efficient way to integrate lossyless into a PyTorch Dataset subclass

    Hey @YannDubs,

    I recently discovered your paper and find the idea very interesting. Therefore, I would like to integrate lossyless into a project I am currently working on. However, there are two requirements/presuppositions in my project that your compressor on PyTorch Hub does not cover as far as I understand it:

    • I assume that the training data do not fit into memory so I cannot decompress the entire dataset at once.
    • Because I cannot load the entire data into memory and shuffle them there, I need access to individual samples of the dataset (for random permutations) without touching the rest of the data (or as little as possible).

    Basically, I would like to integrate lossyless into a subclass of PyTorch's Dataset that implements the __getitem__(index) interface. Before I start experimenting on my own and potentially overlook something that you already thought about, I wanted to ask you if you already considered approaches how to integrate your idea into a PyTorch Dataset.

    Looking forward to a discussion!

    opened by lbhm 5
Owner
Yann Dubois
ML research
Yann Dubois
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022