Dataset para entrenamiento de yoloV3 para 4 clases

Overview

Deteccion de objetos en video

Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyecto para añadir la capacidad de detectar objetos en un stream de video en vivo.

YOLO (You Only Look Once o Tú Solo Ves Una Vez, pero TSVUV no suena tan bien) es un modelo el cual esta optimizado para generar detecciones de elementos a una velocidad muy alta, es por eso que es una muy buena opción para usarlo en video. Tanto el entrenamiento como predicciones con este modelo se ven beneficiadas si se cumple con una computadora que tenga una GPU NVIDIA.

Por default este modelo esta pre entrenado para detecta 80 distintos objetos, la lista de estos se encuentra en el archivo data/coco.names

Los pasos a seguir para poder correr detección de objetos en el video de una webcam son los siguientes (La creación del ambiente asume que Anaconda esta instalado en la computadora):

Crear ambiente

Para tener en orden nuestras paqueterias de python primero vamos a crear un ambiente llamado "deteccionobj" el cual tiene la version 3.6 de python

conda create -n deteccionobj python=3.6

Activamos el ambiente deteccionobj para asegurarnos que estemos en el ambiente correcto al momento de hacer la instalación de todas las paqueterias necesarias

source activate deteccionobj

Instalación de las paqueterias

Estando dentro de nuestro ambiente vamos a instalar todas las paqueterias necesarias para correr nuestro detector de objetos en video, la lista de los paqueter y versiones a instalar están dentro del archivo requirements.txt por lo cual instalaremos haciendo referencia a ese archivo

pip install -r requirements.txt

Descargar los pesos del modelo entrenado

Para poder correr el modelo de yolo tendremos que descargar los pesos de la red neuronal, los pesos son los valores que tienen todas las conexiones entre las neuronas de la red neuronal de YOLO, este tipo de modelos son computacionalmente muy pesados de entrenar desde cero por lo cual descargar el modelo pre entrenado es una buena opción.

bash weights/download_weights.sh

Movemos los pesos descargados a la carpeta llamada weights

mv yolov3.weights weights/

Correr el detector de objetos en video

Por ultimo corremos este comando el cual activa la camara web para poder hacer deteccion de video sobre un video "en vivo"

python deteccion_video.py

Modificaciones

Si en vez de correr detección de objetos sobre la webcam lo que quieres es correr el modelo sobre un video que ya fue pre grabado tienes que cambiar el comando para correr el codigo a:

python deteccion_video.py --webcam 0 --directorio_video <directorio_al_video.mp4>

Entrenamiento

Ahora, si lo que quieres es entrenar un modelo con las clases que tu quieras y no utilizar las 80 clases que vienen por default podemos entrenar nuestro propio modelo. Estos son los pasos que deberás seguir:

Primero deberás etiquetar las imagenes con el formato VOC, aqui tengo un video explicando como hacer este etiquetado:

Desde la carpeta config correremos el archivo create_custom_model para generar un archivo .cfg el cual contiene información sobre la red neuronal para correr las detecciones

cd config
bash create_custom_model.sh <Numero_de_clases_a_detectar>
cd ..

Descargamos la estructura de pesos de YOLO para poder hacer transfer learning sobre esos pesos

cd weights
bash download_darknet.sh
cd ..

Poner las imagenes y archivos de metadata en las carpetar necesarias

Las imagenes etiquetadas tienen que estar en el directorio data/custom/images mientras que las etiquetas/metadata de las imagenes tienen que estar en data/custom/labels. Por cada imagen.jpg debe de existir un imagen.txt (metadata con el mismo nombre de la imagen)

El archivo data/custom/classes.names debe contener el nombre de las clases, como fueron etiquetadas, un renglon por clase.

Los archivos data/custom/valid.txt y data/custom/train.txt deben contener la dirección donde se encuentran cada una de las imagenes. Estos se pueden generar con el siguiente comando (estando las imagenes ya dentro de data/custom/images)

python split_train_val.py

Entrenar

python train.py --model_def config/yolov3-custom.cfg --data_config config/custom.data --pretrained_weights weights/darknet53.conv.74 --batch_size 2

Correr deteccion de objetos en video con nuestras clases

python deteccion_video.py --model_def config/yolov3-custom.cfg --checkpoint_model checkpoints/yolov3_ckpt_99.pth --class_path data/custom/classes.names  --weights_path checkpoints/yolov3_ckpt_99.pth  --conf_thres 0.85
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023