Automate the case review on legal case documents and find the most critical cases using network analysis

Overview

Automation on Legal Court Cases Review

This project is to automate the case review on legal case documents and find the most critical cases using network analysis.

Short write-up

Affiliation: Institute for Social and Economic Research and Policy, Columbia University

Project Information:

Keywords: Automation, PDF parse, String Extraction, Network Analysis

Software:

  • Python : pdfminer, LexNLP, nltk sklearn
  • R: igraph

Scope:

  1. Parse court documents, extract citations from raw text.
  2. Build citation network, identify important cases in the network.
  3. Extract judge's opinion text and meta information including opinion author, court, decision.
  4. Model training to predict court decision based on opinion text.

Polit Study on 159 Legal Court Documents (in pilot_159 folder)

1. Process PDF documents using Python

Ipython Notebook Description
1.Extraction by LexNLP.ipynb Extract meta inforation use LexNLP package.
2.Layer Analysis on Sigle File. ipynb Use pdfminer to extract the raw text and the paragraph segamentation in the PDF document.
3.Patent Position by Layer.ipynb Identify the position of patent number in extracted layers from PDF.
4.Opinion and Author by Layer.ipynb Extract opinion text, author, decisions from the layers list.
5.Wrap up to Meta Data.ipynb Store extracted meta data to .json or .csv
6.Visualize citation frequency.ipynb Bar plot of the citation frequencies

2. Data: Parse PDF documents via Python

These datasets are NOT included in this public repository for intellectual property and privacy concern

File
pdf2text159.json A dictionary of 3 list: file_name, raw_text, layers.
cite_edge159.csv Edge list of citation network
cite_node159.csv Meta information of each case: case_number, court, dates
reference_extract.csv cited cases in a list for every case, untidy format for analysis
citation159.csv file citation pair, tidy format for calculation
regulation159.csv file regulation pair, tidy format for calculation

3. Analyze and Visualize using R

File
Calculate Citation Frequency.Rmd Analyze reference_extract.csv
Citation Network.Rmd Analyze cite_edge159

4. Visulization Chart Sample

Citation Frequencycase_freq

Citation Networkcitation_net

Network Visulization and Predictive Modeling on 854 Legal Court Cases (in Extraction_Modelling folder)

1. Extract opinion and meta information from raw text data

.ipynb notebook Description
Full Dataset Merge.ipynb Merge the 854 cases dataset
Edge and Node List.ipynb Create edge and node list
Full Extractions.ipynb Extract author, judge panel, opinion text
Clean Opinion Text.ipynb Remove references and special characters in opinion text

2. Datasets

These datasets are NOT included in this public repository for intellectual property and privacy concern

Dataset Description
amy_cases.json large dictionary {file name: raw text} for 854 cases, from Lilian's PDF parsing
full_name_text.json convert amy_cases.json key value pair to two list: file_name, raw_text
cite_edge.csv edge list of citation
cite_node.csv node list contains case_code, case_name, court_from, court_type
extraction854.csv full extractions include case_code, case_name, court_from, court_type, result, author, judge_panel
decision_text.json json file include author, decision(result of the case), opinion (opinion text), cleaned_text (cleaned opinion text)
cleaned_text.csv csv file contains allt the cleaned text
predict_data.csv cleaned dataset for NLP modeling predict court decision

3. Visulization using R

R markdown file
Full Network Graph.Rmd draw the full citation network
Citation Betwwen Nodes.Rmd draw citation between all the available cases
Clean Data For Predictive Modelling.rmd clean text data for predictive modeling

Interactive Graph

Play with Interactive Graph

Full Citation Network (all cases and cited cases)

Citation Between Available Cases

4. Predictive Modeling using Python

ipynb notebook
NLP Predictive Modeling.ipynb Try different preprocessing, and build a logistic regression to predict court decision.

Visulization of the Bi-gram (words) with the strongest coefficient

Bigram

Owner
Yi Yin
Tech & Business Alignment @ Wolfram Research, Social Sciences Research @ Columbia University
Yi Yin
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Handout for the tutorial "Creating publication-quality figures with matplotlib"

Handout for the tutorial "Creating publication-quality figures with matplotlib"

JB Mouret 1.9k Jan 02, 2023
This is a small repository for me to implement my simply Data Visualisation skills through Python.

Data Visualisations This is a small repository for me to implement my simply Data Visualisation skills through Python. Steam Population Chart from 10/

9 Dec 31, 2021
Shaded 😎 quantile plots

shadyquant 😎 This python package allows you to quantile and plot lines where you have multiple samples, typically for visualizing uncertainty. Your d

Mehrad Ansari 13 Sep 29, 2022
Matplotlib JOTA style for making figures

Matplotlib JOTA style for making figures This repo has Matplotlib JOTA style to format plots and figures for publications and presentation.

JOTA JORNALISMO 2 May 05, 2022
Tools for calculating and visualizing Elo-like ratings of MLB teams using Retosheet data

Overview This project uses historical baseball games data to calculate an Elo-like rating for MLB teams based on regular season match ups. The Elo rat

Lukas Owens 0 Aug 25, 2021
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
HW 2: Visualizing interesting datasets

HW 2: Visualizing interesting datasets Check out the project instructions here! Mean Earnings per Hour for Males and Females My first graph uses data

7 Oct 27, 2021
Leyna's Visualizing Data With Python

Leyna's Visualizing Data Below is information on the number of bilingual students in three school districts in Massachusetts. You will also find infor

11 Oct 28, 2021
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
The official colors of the FAU as matplotlib/seaborn colormaps

FAU - Colors The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps. We support the old colo

Machine Learning and Data Analytics Lab FAU 9 Sep 05, 2022
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Marc 611 Dec 29, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
Uniform Manifold Approximation and Projection

UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu

Leland McInnes 6k Jan 08, 2023
Interactive Dashboard for Visualizing OSM Data Change

Dashboard and intuitive data downloader for more interactive experience with interpreting osm change data.

1 Feb 20, 2022
Monochromatic colorscheme for matplotlib with opinionated sensible default

Monochromatic colorscheme for matplotlib with opinionated sensible default If you need a simple monochromatic colorscheme for your matplotlib figures,

Aria Ghora Prabono 2 May 06, 2022
Pretty Confusion Matrix

Pretty Confusion Matrix Why pretty confusion matrix? We can make confusion matrix by using matplotlib. However it is not so pretty. I want to make con

Junseo Ko 5 Nov 22, 2022