Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

Related tags

Deep LearningSinIR
Overview

SinIR (Official Implementation)

Requirements

To install requirements:

pip install -r requirements.txt

We used Python 3.7.4 and f-strings which are introduced in python 3.6+

Training

To train a model, write a proper yaml config file in 'config_train' folder (sample yaml files provided in the config_train folder), and run this command:

python train.py <gpu_num> -y <yaml_file_in_'config_train'_folder>

For example, if you want to train a model with config_train/photo.yaml on gpu 0, run:

python train.py 0 -y photo

This will output a trained model, training logs, training output images and so on, to a subdirectory of 'outs' folder with proper naming and numbering which are used for inference.

Note that even though we provide one yaml file for each task, they can be used interchangeably, except few tasks.

You can copy and modify them depending on your purpose. Detailed explanation about configuration is written in the sample yaml files. Please read through it carefully if you need.

Inference

To carry out inference (i.e., image manipulation), you can specify inference yaml files in training yaml files. Please see provided sample training yaml files.

Or alternatively you can run this command:

python infer.py <output_dirnum> <gpu_num> -y <yaml_file_in_config_folder>

For example, if you want to carry out inference with a trained model numbered 002, with config_infer/photo_infer.yaml on gpu 0, run:

python infer.py 2 0 -y photo_infer

Then it will automatically find an output folder numbered 002 and conduct image manipulation, saving related results in the subdirectory.

Note that duplicated numbering (which can be avoided with a normal usage) will incur error. In this case, please keep only one output folder.

We also provide sample yaml files for inference which are paired with yaml files for training. Feel free to copy and modify depending on your purpose.

Acknowledgement

This repository includes images from:

  1. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ (BSD dataset)
  2. https://github.com/luanfujun/deep-painterly-harmonization/ (https://arxiv.org/abs/1804.03189)
  3. https://github.com/luanfujun/deep-photo-styletransfer (https://arxiv.org/abs/1703.07511)
  4. The Web (free images)

This repository includes codes snippets from:

  1. SSIM: https://github.com/VainF/pytorch-msssim
  2. Anti-aliasing + Bicubic resampling: https://github.com/thstkdgus35/bicubic_pytorch
  3. dilated mask: https://github.com/tamarott/SinGAN
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022