Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Overview

Deep Hedging Demo

Pricing Derivatives using Machine Learning

Image of Demo

1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab.

2) Gui version: Run python ./pyqt5/main.py Check ./requirements.txt for main dependencies.

The Black-Scholes (BS) model – developed in 1973 and based on Nobel Prize winning works – has been the de-facto standard for pricing options and other financial derivatives for nearly half a century. The model can be used, under the assumption of a perfect financial market, to calculate an options price and the associated risk sensitivities. These risk sensitivities can then be theoretically used by a trader to create a perfect hedging strategy that eliminates all risks in a portfolio of options. However, the necessary conditions for a perfect financial market, such as zero transaction cost and the possibility of continuous trading, are difficult to meet in the real world. Therefore, in practice, banks have to rely on their traders’ intuition and experience to augment the BS model hedges with manual adjustments to account for these market imperfections. The derivative desks of every bank all hedge their positions, and their PnL and risk exposure depend crucially on the quality of their hedges. If their hedges does not properly account for market imperfections, banks might underestimate the true risk exposure of their portfolios. On the other hand, if their hedges overestimate the cost of market imperfections, banks might overprice their positions (relative to their competitors) and hence risk losing trades and/or customers. Over the last few decades, the financial market has become increasingly sophisticated. Intuition and experience of traders might not be sufficiently fast and accurate to compute the impact of market imperfections on their portfolios and to come up with good manual adjustments to their BS model hedges.

These limitations of the BS model are well-known, but neither academics nor practitioners have managed to develop alternatives to properly and systematically account for market frictions – at least not successful enough to be widely adopted by banks. Could machine learning (ML) be the cure? Last year, the Risk magazine reported that JP Morgan has begun to use machine learning to hedge (a.k.a. Deep Hedging) a portion of its vanilla index options flow book and plan to roll out the similar technology for single stocks, baskets and light exotics. According to Risk.net (2019), the technology can create hedging strategies that “automatically factor in market fictions, such as transaction costs, liquidity constraints and risk limits”. More amazingly, the ML algorithm “far outperformed” hedging strategies derived from the BS model, and it could reduce the cost of hedging (in certain asset class) by “as much as 80%”. The technology has been heralded by some as “a breakthrough in quantitative finance, one that could mark the end of the Black-Scholes era.” Hence, it is not surprising that firms, such as Bank of America, Societe Generale and IBM, are reportedly developing their own ML-based system for derivative hedging.

Machine learning algorithms are often referred to as “black boxes” because of the inherent opaqueness and difficulties to inspect how an algorithm is able to accomplishing what is accomplishing. Buhler et al (2019) recently published a paper outlining the mechanism of this ground-breaking technology. We follow their outlined methodology to implement and replicate the “deep hedging” algorithm under different simulated market conditions. Given a distribution of the underlying assets and trader preference, the “deep hedging” algorithm attempts to identify the optimal hedge strategy (as a function of over 10k model parameters) that minimizes the residual risk of a hedged portfolio. We implement the “deep hedging” algorithm to demonstrate its potential benefit in a simplified yet sufficiently realistic setting. We first benchmark the deep hedging strategy against the classic Black-Scholes hedging strategy in a perfect world with no transaction cost, in which case the performance of both strategies should be similar. Then, we benchmark again in a world with market friction (i.e. non-zero transaction costs), in which case the deep hedging strategy should outperform the classic Black-Scholes hedging strategy.

References:

Risk.net, (2019). “Deep hedging and the end of the Black-Scholes era.”

Hans Buhler et al, (2019). “Deep Hedging.” Quantitative Finance, 19(8).

Owner
Yu Man Tam
Yu Man Tam
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022