Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Overview

Manifold-SCA

Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

The repo is organized as:

📂manifold-sca
 ┣ 📂vulnerability
 ┃ ┣ 📂contribution
 ┃ ┣ 📜{dataset}-{program}-count.json
 ┃ ┗ 📜{program}.dis
 ┣ 📂code
 ┃ ┣ 📂SCA
 ┃ ┣ 📂tools
 ┃ ┗ 📂pp
 ┣ 📂audio
 ┗ 📂output

Code

We release our code in folder code. The implementation of our framework is in folder code/SCA and tools we use to process input/output data are listed in folder code/tools. To launch Prime+Prob, you can use the code in code/pp.

Attack

To prepare the training data for learning data manifold, you first need to instrument the binary with the released pintool code/tools/pinatrace.cpp. You will get a sequence of instruction address: accessed address when the binary processes a media data. Then you need to fold the sequence of accessed address into a matrix and convert the matrix with correct format (e.g., tensor, or numpy array).

We release the scripts for training the framework in folder code/SCA. Before training you need to first customize data paths in each script. The training procedure ends after 100 epochs and takes less than 24 hours on one Nvidia GeForce RTX 2080 GPU.

Localize

Recall that we localize vulnerabilities by pinpointing records in a trace that contribute most to reconstructing media data. So, to perform localization, you need first train the framework as we introduced before.

After training the framework, you just need to run code/localize.py and code/pinpoint.py to localize records in a side channel trace. Note that what you get in this step are several accessed addresses with their indexes in the trace. You need further get the corresponding instruction addresses based on the instrument output you generated when preparing training data.

We release the localized vulnerabilities in folder vulnerability. In folder vulnerability/contribution, we list the corresponding instruction addresses of records that make primary contribution to the reconstruction of media data. We further map the pinpoined instructions back to the corresponding functions. These functions are regarded as side-channel vulnerable functions. We list the results in {dataset}-{program}-count.json, where higher counting indicates a higher possibility of being vulnerable.

Despite each program is evaluated on different datasets, we can still observe that highly consistent vulnerabilities are localized in the same program.

Prime+Probe

We use Mastik to launch Prime+Probe on L1 cache of Intel Xeon CPU and AMD Ryzen CPU. We release our scripts in folder code/pp.

The experiment is launched in Linux OS. You need first to install taskset and cpuset.

We assume victim and spy are on the same CPU core and no other process is runing on this CPU core. To isolate a CPU core, you need to run sudo cset shield --cpu {cpu_id}.

Then run sudo cset shield --exec python run_pp.py -- {cpu_id} {segment_id}. Note that we seperate the media data into several segments to speed up the side channel collection. code/pp/run_pp.py runs code/pp/pp_audio.py with taskset. code/pp/pp_audio.py is the coordinator which runs spy and victim on the same CPU core simultaneously and saves the collected cache set access.

Audio

We upload all (total 2,552) audios reconstructed by our framework under Prime+Probe to folder audio/sc09-pp for result verification. Each audio is named as {Number}_{hash}_{index}.wav and the {Number} is the content of the corresponding reference input, e.g., for a reconstructed audio One_94de6a6a_nohash_1.wav, the number said in the reference input is one. As we reported in the paper, most (~80%) of the audios have consistent contents (i.e., the numbers) with the reference inputs.

Output

We upload media data reconstructed by our framework in folder output.

Owner
Yuanyuan Yuan
Yuanyuan Yuan
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022