Automatic learning-rate scheduler

Overview

AutoLRS

This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published at ICLR 2021.

A TensorFlow version will appear in this repo later.

What is AutoLRS?

Finding a good learning rate schedule for a DNN model is non-trivial. The goal of AutoLRS is to automatically tune the learning rate (LR) over the course of training without human involvement. AutoLRS chops up the whole training process into a few training stages (each consists of τ steps), and its mission is to determine a constant LR for each training stage. AutoLRS treats the validation loss as a black-box function of LR, and uses Bayesian optimization (BO) to search for the best LR which can minimize the validation loss for each training stage. Because BO would require τ steps of training to evaluate the validation loss for each LR it explores, to reduce this cost, we only apply an LR to train the DNN for τ’ (τ’ << τ) steps and train an exponential time-series forecasting model to predict the loss after τ steps. In our default setting, τ’ = τ/10 and BO explores 10 LRs in each stage, so the number of steps for searching LR is equal to the number of steps for actual training.

AutoLRS does not depend on a pre-defined LR schedule, dataset, or a specified task and is compatible with almost all optimizers. The LR schedules auto-generated by AutoLRS lead to speedup over highly hand-tuned LR schedules for several state-of-the-art DNNs including ResNet-50, Transformer, and BERT.

Setup

$ pip install --user -r requirements.txt

How to use AutoLRS for your work?

autolrs_server.py is the brain of AutoLRS, which implements the search algorithm including BO and the exponential forecasting model.

autolrs_callback.py implements a callback which you can plug into your Pytorch training loop. The callback receives commands from the server via socket, adjusting the learning rate, saving/restoring model parameters and optimizer states according to commands sent from the server.

Notes

  • You need to pass two arguments min_lr and max_lr when launching autolrs_server.py to set the LR search interval. This interval can be found by an LR range test or simply set according to your experience. Do not set the min_lr too small (for example 1e-10), otherwise, BO will waste a lot of cycles to try exploring very small LR values.
  • The current AutoLRS does not search LR for warmup steps since warmup does not have an explicit optimization objective, such as minimizing the validation loss. Warmup usually takes very few steps, and its main purpose is to prevent deeper layers in a DNN from creating training instability, especially when training using a large batch size. You can manually add a warmup stage by setting warmup_step and warmup_lr when initializing the autolrs_callback.AutoLRS callback.

Example

We provide an example of using AutoLRS to train various DNNs on the CIFAR-10 dataset. The models are imported from kuangliu's great and simple pytorch-cifar repository.

Prerequisites: Python 3.6+, PyTorch 1.0+

Run the example

$ bash run.sh

Contact

You can contact us at [email protected]. We would love to hear your questions and feedback!

Poster

Owner
Yuchen Jin
Yuchen Jin
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023