Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

Related tags

Deep LearningRecycleD
Overview

RecycleD

Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM Multimedia 2021 Brave New Ideas (BNI) Track.

Brief Introduction

The core idea of RecycleD is to reuse the pre-trained discriminator in SR WGAN to directly assess the image perceptual quality.

overall_pipeline

In addition, we use the Salient Object Detection (SOD) networks and Image Residuals to produce weight matrices to improve the PatchGAN discriminator.

Requirements

  • Python 3.6
  • NumPy 1.17
  • PyTorch 1.2
  • torchvision 0.4
  • tensorboardX 1.4
  • scikit-image 0.16
  • Pillow 5.2
  • OpenCV-Python 3.4
  • SciPy 1.4

Datasets

For Training

We adopt the commonly used DIV2K as the training set to train SR WGAN.
For training, we use the HR images in "DIV2K/DIV2K_train_HR/", and LR images in "DIV2K/DIV2K_train_LR_bicubic/X4/". (The upscale factor is x4.)
For validation, we use the Set5 & Set14 datasets. You can download these benchmark datasets from LapSRN project page or My Baidu disk with password srbm.

For Test

We use PIPAL, Ma's dataset, BAPPS-Superres as super-resolved image quality datasets.
We use LIVE-itW and KonIQ-10k as artificially distorted image quality datasets.

Getting Started

See the directory shell.

Pre-trained Models

If you want to test the discriminators, you need to download the pre-trained models, and put them into the directory pretrained_models.
Meanwhile, you may need to modify the model location options in the shell scripts so that these model files can be loaded correctly.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation

If you find this repository is useful for your research, please cite the following paper.

(1) BibTeX:

(2) ACM Reference Format:

Yunan Zhu, Haichuan Ma, Jialun Peng, Dong Liu, and Zhiwei Xiong. 2021.
Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN.
In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21), October 20–24, 2021, Virtual Event, China.
ACM, NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3474085.3479234

About Brave New Ideas (BNI) Track

Following paragraphs were directly excerpted from the Call for Brave New Ideas of ACM Multimedia 2021.

The Brave New Ideas (BNI) Track of ACM Multimedia 2021 is calling for innovative papers that open up new vistas for multimedia research and stimulate activity towards addressing new, long term challenges of interest to the multimedia research community. Submissions should be scientifically rigorous and also introduce fresh perspectives.

We understand "brave" to mean that a paper (or an area of research introduced by the paper) has great potential for high impact. For the proposed algorithm, technology or application to be understood as high impact, the authors should be able to argue that their proposal is important to solving problems, to supporting new perspectives, or to providing services that directly affect people's lives.

We understand "new" to mean that an idea has not yet been proposed before. The component techniques and technologies may exist, but their integration must be novel.

BNI FAQ
1.What type of papers are suitable for the BNI track?
The BNI track invites papers with brave and new ideas, where "brave" means “out-of-the-box thinking” ideas that may generate high impact and "new" means ideas not yet been proposed before. The highlight of BNI 2021 is "Multimedia for Social Good", where innovative research showcasing the benefit to the general public are encouraged.
2.What is the format requirement for BNI papers?
The paper format requirement is consistent with that of the regular paper.
4.How selective is the BNI track?
The BNI track is at least as competitive as the regular track. A BNI paper is regarded as respectful if not more compared to a regular paper. It is even more selective than the regular one with the acceptance rate at ~10% in previous years.
6.How are the BNI papers published?
The BNI papers are officially published in the conference proceeding.

Acknowledgements

This code borrows partially from the repo BasicSR.
We use the SOD networks from BASNet and U-2-Net.

Owner
Yunan Zhu
MEng student at EEIS, USTC. [email protected]
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023