[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Overview

Delving into Deep Imbalanced Regression

This repository contains the implementation code for paper:
Delving into Deep Imbalanced Regression
Yuzhe Yang, Kaiwen Zha, Ying-Cong Chen, Hao Wang, Dina Katabi
38th International Conference on Machine Learning (ICML 2021), Long Oral
[Project Page] [Paper] [Video] [Blog Post]


Deep Imbalanced Regression (DIR) aims to learn from imbalanced data with continuous targets,
tackle potential missing data for certain regions, and generalize to the entire target range.

Beyond Imbalanced Classification: Brief Introduction for DIR

Existing techniques for learning from imbalanced data focus on targets with categorical indices, i.e., the targets are different classes. However, many real-world tasks involve continuous and even infinite target values. We systematically investigate Deep Imbalanced Regression (DIR), which aims to learn continuous targets from natural imbalanced data, deal with potential missing data for certain target values, and generalize to the entire target range.

We curate and benchmark large-scale DIR datasets for common real-world tasks in computer vision, natural language processing, and healthcare domains, ranging from single-value prediction such as age, text similarity score, health condition score, to dense-value prediction such as depth.

Usage

We separate the codebase for different datasets into different subfolders. Please go into the subfolders for more information (e.g., installation, dataset preparation, training, evaluation & models).

IMDB-WIKI-DIR  |  AgeDB-DIR  |  NYUD2-DIR  |  STS-B-DIR

Highlights

(1) ✔️ New Task: Deep Imbalanced Regression (DIR)

(2) ✔️ New Techniques:

image image
Label distribution smoothing (LDS) Feature distribution smoothing (FDS)

(3) ✔️ New Benchmarks:

  • Computer Vision: 💡 IMDB-WIKI-DIR (age) / AgeDB-DIR (age) / NYUD2-DIR (depth)
  • Natural Language Processing: 📋 STS-B-DIR (text similarity score)
  • Healthcare: 🏥 SHHS-DIR (health condition score)
IMDB-WIKI-DIR AgeDB-DIR NYUD2-DIR STS-B-DIR SHHS-DIR
image image image image image

Updates

  • [06/2021] We provide a hands-on tutorial of DIR. Check it out!
  • [05/2021] We create a Blog post for this work (version in Chinese is also available here). Check it out for more details!
  • [05/2021] Paper accepted to ICML 2021 as a Long Talk. We have released the code and models. You can find all reproduced checkpoints via this link, or go into each subfolder for models for each dataset.
  • [02/2021] arXiv version posted. Please stay tuned for updates.

Citation

If you find this code or idea useful, please cite our work:

@inproceedings{yang2021delving,
  title={Delving into Deep Imbalanced Regression},
  author={Yang, Yuzhe and Zha, Kaiwen and Chen, Ying-Cong and Wang, Hao and Katabi, Dina},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected] & [email protected]) or Github issues. Enjoy!

Owner
Yuzhe Yang
Ph.D. student at MIT CSAIL
Yuzhe Yang
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022