[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Overview

Rethinking the Value of Labels for Improving Class-Imbalanced Learning

This repository contains the implementation code for paper:
Rethinking the Value of Labels for Improving Class-Imbalanced Learning
Yuzhe Yang, and Zhi Xu
34th Conference on Neural Information Processing Systems (NeurIPS), 2020
[Website] [arXiv] [Paper] [Slides] [Video]

If you find this code or idea useful, please consider citing our work:

@inproceedings{yang2020rethinking,
  title={Rethinking the Value of Labels for Improving Class-Imbalanced Learning},
  author={Yang, Yuzhe and Xu, Zhi},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

Overview

In this work, we show theoretically and empirically that, both semi-supervised learning (using unlabeled data) and self-supervised pre-training (first pre-train the model with self-supervision) can substantially improve the performance on imbalanced (long-tailed) datasets, regardless of the imbalanceness on labeled/unlabeled data and the base training techniques.

Semi-Supervised Imbalanced Learning: Using unlabeled data helps to shape clearer class boundaries and results in better class separation, especially for the tail classes. semi

Self-Supervised Imbalanced Learning: Self-supervised pre-training (SSP) helps mitigate the tail classes leakage during testing, which results in better learned boundaries and representations. self

Installation

Prerequisites

Dependencies

  • PyTorch (>= 1.2, tested on 1.4)
  • yaml
  • scikit-learn
  • TensorboardX

Code Overview

Main Files

Main Arguments

  • --dataset: name of chosen long-tailed dataset
  • --imb_factor: imbalance factor (inverse value of imbalance ratio \rho in the paper)
  • --imb_factor_unlabel: imbalance factor for unlabeled data (inverse value of unlabel imbalance ratio \rho_U)
  • --pretrained_model: path to self-supervised pre-trained models
  • --resume: path to resume checkpoint (also for evaluation)

Getting Started

Semi-Supervised Imbalanced Learning

Unlabeled data sourcing

CIFAR-10-LT: CIFAR-10 unlabeled data is prepared following this repo using the 80M TinyImages. In short, a data sourcing model is trained to distinguish CIFAR-10 classes and an "non-CIFAR" class. For each class, images are then ranked based on the prediction confidence, and unlabeled (imbalanced) datasets are constructed accordingly. Use the following link to download the prepared unlabeled data, and place in your data_path:

SVHN-LT: Since its own dataset contains an extra part with 531.1K additional (labeled) samples, they are directly used to simulate the unlabeled dataset.

Note that the class imbalance in unlabeled data is also considered, which is controlled by --imb_factor_unlabel (\rho_U in the paper). See imbalance_cifar.py and imbalance_svhn.py for details.

Semi-supervised learning with pseudo-labeling

To perform pseudo-labeling (self-training), first a base classifier is trained on original imbalanced dataset. With the trained base classifier, pseudo-labels can be generated using

python gen_pseudolabels.py --resume <ckpt-path> --data_dir <data_path> --output_dir <output_path> --output_filename <save_name>

We provide generated pseudo label files for CIFAR-10-LT & SVHN-LT with \rho=50, using base models trained with standard cross-entropy (CE) loss:

To train with unlabeled data, for example, on CIFAR-10-LT with \rho=50 and \rho_U=50

python train_semi.py --dataset cifar10 --imb_factor 0.02 --imb_factor_unlabel 0.02

Self-Supervised Imbalanced Learning

Self-supervised pre-training (SSP)

To perform Rotation SSP on CIFAR-10-LT with \rho=100

python pretrain_rot.py --dataset cifar10 --imb_factor 0.01

To perform MoCo SSP on ImageNet-LT

python pretrain_moco.py --dataset imagenet --data <data_path>

Network training with SSP models

Train on CIFAR-10-LT with \rho=100

python train.py --dataset cifar10 --imb_factor 0.01 --pretrained_model <path_to_ssp_model>

Train on ImageNet-LT / iNaturalist 2018

python -m imagenet_inat.main --cfg <path_to_ssp_config> --model_dir <path_to_ssp_model>

Results and Models

All related data and checkpoints can be found via this link. Individual results and checkpoints are detailed as follows.

Semi-Supervised Imbalanced Learning

CIFAR-10-LT

Model Top-1 Error Download
CE + [email protected] (\rho=50 and \rho_U=1) 16.79 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=25) 16.88 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=50) 18.36 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=100) 19.94 ResNet-32

SVHN-LT

Model Top-1 Error Download
CE + [email protected] (\rho=50 and \rho_U=1) 13.07 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=25) 13.36 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=50) 13.16 ResNet-32
CE + [email protected] (\rho=50 and \rho_U=100) 14.54 ResNet-32

Test a pretrained checkpoint

python train_semi.py --dataset cifar10 --resume <ckpt-path> -e

Self-Supervised Imbalanced Learning

CIFAR-10-LT

  • Self-supervised pre-trained models (Rotation)

    Dataset Setting \rho=100 \rho=50 \rho=10
    Download ResNet-32 ResNet-32 ResNet-32
  • Final models (200 epochs)

    Model \rho Top-1 Error Download
    CE(Uniform) + SSP 10 12.28 ResNet-32
    CE(Uniform) + SSP 50 21.80 ResNet-32
    CE(Uniform) + SSP 100 26.50 ResNet-32
    CE(Balanced) + SSP 10 11.57 ResNet-32
    CE(Balanced) + SSP 50 19.60 ResNet-32
    CE(Balanced) + SSP 100 23.47 ResNet-32

CIFAR-100-LT

  • Self-supervised pre-trained models (Rotation)

    Dataset Setting \rho=100 \rho=50 \rho=10
    Download ResNet-32 ResNet-32 ResNet-32
  • Final models (200 epochs)

    Model \rho Top-1 Error Download
    CE(Uniform) + SSP 10 42.93 ResNet-32
    CE(Uniform) + SSP 50 54.96 ResNet-32
    CE(Uniform) + SSP 100 59.60 ResNet-32
    CE(Balanced) + SSP 10 41.94 ResNet-32
    CE(Balanced) + SSP 50 52.91 ResNet-32
    CE(Balanced) + SSP 100 56.94 ResNet-32

ImageNet-LT

  • Self-supervised pre-trained models (MoCo)
    [ResNet-50]

  • Final models (90 epochs)

    Model Top-1 Error Download
    CE(Uniform) + SSP 54.4 ResNet-50
    CE(Balanced) + SSP 52.4 ResNet-50
    cRT + SSP 48.7 ResNet-50

iNaturalist 2018

  • Self-supervised pre-trained models (MoCo)
    [ResNet-50]

  • Final models (90 epochs)

    Model Top-1 Error Download
    CE(Uniform) + SSP 35.6 ResNet-50
    CE(Balanced) + SSP 34.1 ResNet-50
    cRT + SSP 31.9 ResNet-50

Test a pretrained checkpoint

# test on CIFAR-10 / CIFAR-100
python train.py --dataset cifar10 --resume <ckpt-path> -e

# test on ImageNet-LT / iNaturalist 2018
python -m imagenet_inat.main --cfg <path_to_ssp_config> --model_dir <path_to_model> --test

Acknowledgements

This code is partly based on the open-source implementations from the following sources: OpenLongTailRecognition, classifier-balancing, LDAM-DRW, MoCo, and semisup-adv.

Contact

If you have any questions, feel free to contact us through email ([email protected] & [email protected]) or Github issues. Enjoy!

Owner
Yuzhe Yang
Ph.D. student at MIT CSAIL
Yuzhe Yang
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Woosung Choi 63 Nov 14, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022