SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

Overview

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral)

Python 3.7 pytorch 1.2.0 pyqt5 5.13.0

image Figure: Face image editing controlled via style images and segmentation masks with SEAN

We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
Peihao Zhu, Rameen Abdal, Yipeng Qin, Peter Wonka
Computer Vision and Pattern Recognition CVPR 2020, Oral

[Paper] [Project Page] [Demo]

Installation

Clone this repo.

git clone https://github.com/ZPdesu/SEAN.git
cd SEAN/

This code requires PyTorch, python 3+ and Pyqt5. Please install dependencies by

pip install -r requirements.txt

This model requires a lot of memory and time to train. To speed up the training, we recommend using 4 V100 GPUs

Dataset Preparation

This code uses CelebA-HQ and CelebAMask-HQ dataset. The prepared dataset can be directly downloaded here. After unzipping, put the entire CelebA-HQ folder in the datasets folder. The complete directory should look like ./datasets/CelebA-HQ/train/ and ./datasets/CelebA-HQ/test/.

Generating Images Using Pretrained Models

Once the dataset is prepared, the reconstruction results be got using pretrained models.

  1. Create ./checkpoints/ in the main folder and download the tar of the pretrained models from the Google Drive Folder. Save the tar in ./checkpoints/, then run

    cd checkpoints
    tar CelebA-HQ_pretrained.tar.gz
    cd ../
    
  2. Generate the reconstruction results using the pretrained model.

    python test.py --name CelebA-HQ_pretrained --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/test/labels --image_dir datasets/CelebA-HQ/test/images --label_nc 19 --no_instance --gpu_ids 0
  3. The reconstruction images are saved at ./results/CelebA-HQ_pretrained/ and the corresponding style codes are stored at ./styles_test/style_codes/.

  4. Pre-calculate the mean style codes for the UI mode. The mean style codes can be found at ./styles_test/mean_style_code/.

    python calculate_mean_style_code.py

Training New Models

To train the new model, you need to specify the option --dataset_mode custom, along with --label_dir [path_to_labels] --image_dir [path_to_images]. You also need to specify options such as --label_nc for the number of label classes in the dataset, and --no_instance to denote the dataset doesn't have instance maps.

python train.py --name [experiment_name] --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/train/labels --image_dir datasets/CelebA-HQ/train/images --label_nc 19 --no_instance --batchSize 32 --gpu_ids 0,1,2,3

If you only have single GPU with small memory, please use --batchSize 2 --gpu_ids 0.

UI Introduction

We provide a convenient UI for the users to do some extension works. To run the UI mode, you need to:

  1. run the step Generating Images Using Pretrained Models to save the style codes of the test images and the mean style codes. Or you can directly download the style codes from here. (Note: if you directly use the downloaded style codes, you have to use the pretrained model.

  2. Put the visualization images of the labels used for generating in ./imgs/colormaps/ and the style images in ./imgs/style_imgs_test/. Some example images are provided in these 2 folders. Note: the visualization image and the style image should be picked from ./datasets/CelebAMask-HQ/test/vis/ and ./datasets/CelebAMask-HQ/test/labels/, because only the style codes of the test images are saved in ./styles_test/style_codes/. If you want to use your own images, please prepare the images, labels and visualization of the labels in ./datasets/CelebAMask-HQ/test/ with the same format, and calculate the corresponding style codes.

  3. Run the UI mode

    python run_UI.py --name CelebA-HQ_pretrained --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/test/labels --image_dir datasets/CelebA-HQ/test/images --label_nc 19 --no_instance --gpu_ids 0
  4. How to use the UI. Please check the detail usage of the UI from our Video.

    image

Other Datasets

Will be released soon.

License

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) The code is released for academic research use only.

Citation

If you use this code for your research, please cite our papers.

@InProceedings{Zhu_2020_CVPR,
author = {Zhu, Peihao and Abdal, Rameen and Qin, Yipeng and Wonka, Peter},
title = {SEAN: Image Synthesis With Semantic Region-Adaptive Normalization},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Acknowledgments

We thank Wamiq Reyaz Para for helpful comments. This code borrows heavily from SPADE. We thank Taesung Park for sharing his codes. This work was supported by the KAUST Office of Sponsored Research (OSR) under AwardNo. OSR-CRG2018-3730.

Owner
Peihao Zhu
CS PhD at KAUST
Peihao Zhu
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022