Image Super-Resolution by Neural Texture Transfer

Related tags

Deep LearningSRNTT
Overview

SRNTT: Image Super-Resolution by Neural Texture Transfer

Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer accepted in CVPR 2019. This is a simplified version, where the reference images are used without augmentation, e.g., rotation and scaling.

Project Page

Pytorch Implementation

Contents

Pre-requisites

  • Python 3.6
  • TensorFlow 1.13.1
  • requests 2.21.0
  • pillow 5.4.1
  • matplotlib 3.0.2

Tested on MacOS (Mojave).

Dataset

This repo only provides a small training set of ten input-reference pairs for demo purpose. The input images and reference images are stored in data/train/CUFED/input and data/train/CUFED/ref, respectively. Corresponding input and refernece images are with the same file name. To speed up the training process, patch matching and swapping are performed offline, and the swapped feature maps will be saved to data/train/CUFED/map_321 (see offline_patchMatch_textureSwap.py for more details). If you want to train your own model, please prepare your own training set or download either of the following demo training sets:

11,485 input-reference pairs (size 320x320) extracted from DIV2K.

Each pair is extracted from the same image without overlap but considering scaling and rotation.

$ python download_dataset.py --dataset_name DIV2K
11,871 input-reference pairs (size 160x160) extracted from CUFED.

Each pair is extracted from the similar images, including five degrees of similarity.

$ python download_dataset.py --dataset_name CUFED

This repo includes one grounp of samples from the CUFED5 dataset, where each input image corresponds to five reference images (different from the paper) with different degrees of similarity to the input image. Please download the full dataset by

$ python download_dataset.py --dataset_name CUFED5

Easy Testing

$ sh test.sh

The results will be save to the folder demo_testing_srntt, including the following 6 images:

  • [1/6] HR.png, the original image.

    Original image

  • [2/6] LR.png, the low-resolution (LR) image, downscaling factor 4x.

    LR image

  • [3/6] Bicubic.png, the upscaled image by bicubic interpolation, upscaling factor 4x.

    Bicubic image

  • [4/6] Ref_XX.png, the reference images, indexed by XX.

    Reference image

  • [5/6] Upscale.png, the upscaled image by a pre-trained SR network, upscaling factor 4x.

    Upscaled image

  • [6/6] SRNTT.png, the SR result by SRNTT, upscaling factor 4x.

    Upscaled image

Custom Testing

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --use_init_model_only   default False, whether use init model, trained with reconstruction loss only
    --use_weight_map        defualt False, whether use weighted model, trained with the weight map.
    --save_dir              path/to/a/specified/model if it exists, otherwise ignor this parameter

Please note that this repo provides two types of pre-trained SRNTT models in SRNTT/models/SRNTT:

  • srntt.npz is trained by all losses, i.e., reconstruction loss, perceptual loss, texture loss, and adversarial loss.
  • srntt_init.npz is trained by only the reconstruction loss, corresponding to SRNTT-l2 in the paper.

To switch between the demo models, please set --use_init_model_only to decide whether use srntt_init.npz.

Easy Training

$ sh train.sh

The CUFED training set will be downloaded automatically. To speed up the training process, patch matching and swapping are conducted to get the swapped feature maps in an offline manner. The models will be saved to demo_training_srntt/model, and intermediate samples will be saved to demo_training_srntt/sample. Parameter settings are save to demo_training_srntt/arguments.txt.

Custom Training

Please first prepare the input and reference images which are squared patches in the same size. In addition, input and reference images should be stored in separated folders, and the correspoinding input and reference images are with the same file name. Please refer to the data/train/CUFED folder for examples. Then, use offline_patchMatch_textureSwap.py to generate the feature maps in ahead.

$ python main.py
    --is_train True
    --save_dir folder/to/save/models
    --input_dir path/to/input/image/folder
    --ref_dir path/to/ref/image/folder
    --map_dir path/to/feature_map/folder
    --batch_size default 9
    --num_epochs default 100
    --input_size default 40, the size of LR patch, i.e., 1/4 of the HR image, set to 80 for the DIV2K dataset
    --use_weight_map defualt False, whether use the weight map that reduces negative effect 
                     from the reference image but may also decrease the sharpness.  

Please refer to main.py for more parameter settings for training.

Test on the custom training model

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --save_dir              the same as save_dir in training

Acknowledgement

Thanks to Tensorlayer for facilitating the implementation of this demo code. We have include the Tensorlayer 1.5.0 in SRNTT/tensorlayer.

Contact

Zhifei Zhang

Owner
Zhifei Zhang
Zhifei Zhang
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022