Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Overview

StochFuzz: A New Solution for Binary-only Fuzzing

test benchmark

loading-ag-167

StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries. It is facilitated by a novel incremental and stochastic rewriting technique that is particularly suitable for binary-only fuzzing. Any AFL-based fuzzer, which takes edge coverage (defined by AFL) as runtime feedback, can acquire benefits from StochFuzz to directly fuzz stripped binaries.

More data and the results of the experiments can be found here. Example cases of leveraging StochFuzz to improve advanced AFL-based fuzzers (AFL++ and Polyglot) can be found in system.md.

Clarifications

  • We adopt a new system design than the one from the paper. Details can be found at system.md.
  • In the paper, when we are talking about e9patch, we are actually talking about the binary-only fuzzing tool built upon e9patch, namely e9tool. Please refer to its website for more details.
  • StochFuzz provides sound rewriting for binaries without inlined data, and probabilistically sound rewriting for the rest.

Building StochFuzz

StochFuzz is built upon Keystone, Capstone, GLib, and libunwind.

These dependences can be built by build.sh. If you are trying to build StochFuzz in a clean container, make sure some standard tools like autoreconf and libtool are installed.

$ git clone https://github.com/ZhangZhuoSJTU/StochFuzz.git
$ cd StochFuzz
$ ./build.sh

StochFuzz itself can be built by GNU Make.

$ cd src
$ make release

We have tested StochFuzz on Ubuntu 18.04. If you have any issue when running StochFuzz on other systems, please kindly let us know.

How to Use

StochFuzz provides multiple rewriting options, which follows the AFL's style of passing arguments.

$ ./stoch-fuzz -h
stoch-fuzz 1.0.0 by <[email protected]>

./stoch-fuzz [ options ] -- target_binary [ ... ]

Mode settings:

  -S            - start a background daemon and wait for a fuzzer to attach (defualt mode)
  -R            - dry run target_binary with given arguments without an attached fuzzer
  -P            - patch target_binary without incremental rewriting
  -D            - probabilistic disassembly without rewriting
  -V            - show currently observed breakpoints

Rewriting settings:

  -g            - trace previous PC
  -c            - count the number of basic blocks with conflicting hash values
  -d            - disable instrumentation optimization
  -r            - assume the return addresses are only used by RET instructions
  -e            - install the fork server at the entrypoint instead of the main function
  -f            - forcedly assume there is data interleaving with code
  -i            - ignore the call-fallthrough edges to defense RET-misusing obfuscation

Other stuff:

  -h            - print this help
  -x execs      - set the number of executions after which a checking run will be triggered
                  set it as zero to disable checking runs (default: 200000)
  -t msec       - set the timeout for each daemon-triggering execution
                  set it as zero to ignore the timeout (default: 2000 ms)
  -l level      - set the log level, including INFO, WARN, ERROR, and FATAL (default: INFO)

Basic Usage

- It is worth first trying the advanced strategy (see below) because that is much more cost-effective.

To fuzz a stripped binary, namely example.out, we need to cd to the directory of the target binary. For example, if the full path of example.out is /root/example.out, we need to first cd /root/. Furthermore, it is dangerous to run two StochFuzz instances under the same directory. These restrictions are caused by some design faults and we will try to relax them in the future.

Assuming StochFuzz is located at /root/StochFuzz/src/stoch-fuzz, execute the following command to start rewriting the target binary.

$ cd /root/
$ /root/StochFuzz/src/stoch-fuzz -- example.out # do not use ./example.out here

After the initial rewriting, we will get a phantom file named example.out.phantom. This phantom file can be directly fuzzed by AFL or any AFL-based fuzzer. Note that the StochFuzz process would not stop during fuzzing, so please make sure the process is alive during fuzzing.

Here is a demo that shows how StochFuzz works.

asciicast

Advanced Usage

Compared with the compiler-based instrumentation (e.g., afl-clang-fast), StochFuzz has additional runtime overhead because it needs to emulate each CALL instruction to support stack unwinding.

Inspired by a recent work, we provide an advanced rewriting strategy where we do not emulate CALL instructions but wrap the _ULx86_64_step function from libunwind to support stack unwinding. This strategy works for most binaries but may fail in some cases like fuzzing statically linked binaries.

To enable such strategy, simply provide a -r option to StochFuzz.

$ cd /root/
$ /root/StochFuzz/src/stoch-fuzz -r -- example.out # do not use ./example.out here

Addtionally, before fuzzing, we need to prepare the AFL_PRELOAD environment variable for AFL.

$ export STOCHFUZZ_PRELOAD=$(/root/StochFuzz/scritps/stochfuzz_env.sh)
$ AFL_PRELOAD=$STOCHFUZZ_PRELOAD afl-fuzz -i seeds -o output -t 2000 -- example.out.phantom @@

Following demo shows how to apply this advanced strategy.

asciicast

Troubleshootings

Common issues can be referred to trouble.md. If it cannot help solve your problem, please kindly open a Github issue.

Besides, we provide some tips on using StochFuzz, which can be found at tips.md

Development

Currently, we have many todo items. We present them in todo.md.

We also present many pending decisions which we are hesitating to take, in todo.md. If you have any thought/suggestion, do not hesitate to let us know. It would be very appreciated if you can help us improve StochFuzz.

StochFuzz should be considered an alpha-quality software and it is likely to contain bugs.

I will try my best to maintain StochFuzz timely, but sometimes it may take me more time to respond. Thanks for your understanding in advance.

Cite

Zhang, Zhuo, et al. "STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting." 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021.

References

  • Duck, Gregory J., Xiang Gao, and Abhik Roychoudhury. "Binary rewriting without control flow recovery." Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 2020.
  • Meng, Xiaozhu, and Weijie Liu. "Incremental CFG patching for binary rewriting." Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
  • Aschermann, Cornelius, et al. "Ijon: Exploring deep state spaces via fuzzing." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.
  • Google. “Google/AFL.” GitHub, github.com/google/AFL.
Owner
Zhuo Zhang
Zhuo Zhang
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023