This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

Related tags

Deep LearningISL
Overview

ISL

This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted to ICCV2021. The code contains training and testing several network architecture (ResNet18, ResNet50 and AlexNet) on four datasets (SVHN, CIFAR10, CIFAR100 and ImageNet) using our proposed ISL method.

Quick Start

Prerequisites

  • python 3.5+
  • pytorch 1.0.0+
  • torchvision 0.2.1 (not compatible with higher version)
  • other packages like numpy and PIL

Dataset Preparation

Please follow the instruction in this to download the ImageNet dataset. For small datasets like SVHN, you can either download them manually or set the download parameter in torchvision.dataset True to download them automatically.

After downloading them, please put them in data/, an SSD is highly recommended for training on ImageNet.

Training and Testing

Small Datasets

For training on SVHN, CIFAR10 or CIFAR100, please run:

python small_main.py --data='data/' --arch='resnet18/resnet50/alexnet' --dataset='svhn/cifar10/cifar100'

The training code contains testing the weighted $k$NN on features with $k=200$ every 5 epochs. For testing an existing weight file, just run:

python small_main.py --data='data/' --arch='resnet18/resnet50/alexnet' --dataset='svhn/cifar10/cifar100' --test-only=True --recompute=True --resume='weight_file'

ImageNet

For training on ImageNet, just run:

python imagenet_main.py --data='data/' --arch='resnet18/resnet50/alexnet'

During training, we monitor the weighted $k$NN with $k=1$ every two epochs, that's because using $k=200$ will be slow on big dataset like ImageNet.

For testing using $k$NN with $k=200$, you can run:

python imagenet_main.py --data='data/' --arch='resnet18/resnet50/alexnet' --test-only=True --recompute=True --resume='weight_file'

To reproduce the ResNet ImageNet result in our paper, you need to run the code on a 16GB memory GPU like NVIDIA Tesla V100 (AlexNet can run on a 11 GB memory GPU like RTX 2080Ti). The performance will drop slightly if trained on two GPUs as observed in our experiments. Also, you may need to switch the training stage manually because sometimes the program just fails to identify the end of training GANs and it might not be able to use the best G for neighborhood mining. The total training time lasts for around 4 days in our experiments using a single GPU and batch size equals to 256.

Owner
IVG Lab, Department of Automation, Tsinghua Univeristy
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022