A library for building and serving multi-node distributed faiss indices.

Overview

About

Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It follows a simple concept of a set of index server processes runing in a complete isolation from each other. All the coordination is done at the client side. This siplified many-vs-many client-to-server relationship architecture is flexible and is specifically designed for research projects vs more complicated solutions that aims mostly at production usage and transactionality support. The data is sharded over several indexes on different servers in RAM. The search client aggregates results from different servers during retrieval. The service is model-independent and operates with supplied embeddings and metadatas.

Features:

  • Multiple clients connect to all servers via RPC.
  • At indexing time: clients balance data across servers. The client sends the next available batch of embeddings to a server that is selected in a round-robin fashion.
  • The index client aggregates results from different servers during retrieval. It queries all the servers and uses a heap to find final results.
  • The API allows to send and store any additional metadata (e.g. raw bpe, language information, etc).
  • Launch servers with submitit.
  • Save/load the index/metadata periodically. Can restore from a stopped index state.
  • Supports several indexes at the same time (e.g. one index per language, or different versions of the same index).
  • The API is trying to optimize for network bandwidth.
  • Flexible index configuration.

Installation

pip install -e .

Testing

python -m unittest discover tests

or

pip install pytest
pytest tests

Code formatting

black --line-length 100 .

Usage

Starting the index servers

distributed-faiss consist of server and client parts which are supposed to be launched as separate services. The set of server processes can be launched either by using its API or the provided lauch tool that uses submitit library that works on clusters with SLURM cluster management and job scheduling system

Launching servers with submitit on SLURM managed clusters

Example:

python scripts/server_launcher.py \
    --log-dir /logs/distr-faiss/ \
    --discovery-config /tmp/discover_config.txt \
    --save-dir $HOME/dfaiss_data \
    --num-servers 64 \
    --num-servers-per-node 32 \
    --timeout-min 4320 \
    --mem-gb 400 \
    --base-port 12033 \
    --partition dev &

Clients can now read /tmp/discover_config.txt to discover servers.

Will launch a job running 64 servers in the background. To view logs (which are verbose but informative) run something like: watch 'tail /logs/distr-faiss/34785924_0_log.err' where the 34785924 will be the slurm job id you are allocated.

Launching servers using API

You can run each index server process indepentently using the following API:

server = IndexServer(global_rank, index_storage_dir)
server.start_blocking(port, load_index=True)

The rank of the server node is needed for reading/writing its own part of the index from/to files. Index are dumped to files for persistent storage. The filesytem path convetion is that there is a shared folder for the entire logical index with each server node working on its own sub-folder inside it. index_storage_dir is the default parameter to store indexes. Can be overrided for each logic index by specifing this attribute in the index configuration object (see client code examples below) When you start a server node on a specific machine and port, you need to write the host, port line to a specific file which can later be used to start a client.

Client API

Each client process is supposed to work with all the server nodes and does all the data balancing among them. Client processes can be run independently of each other and work with the same set of server nodes simulateously.

index_client = IndexClient(discovery_config)

discovery_config is the path to the shared FS file which was used to start the set of servers and contains all (host, port) info to connect to all of them.

Creating an index

Each client & server nodes can work with multiple logical indexes (consider them as fully separate tables in an SQL database). Each logical index can have its own faiss-related configuration, FS location and other parameters which affect its creation logic. Example of creating a simle IVF index:

index_client = IndexClient(discovery_config)
idx_cfg = IndexCfg(
    index_builder_type='ivf_simple',
    dim=128,
    train_num=10000,
    centroids=64,
    metric='dot',
    nprobe=12,
    index_storage_dir='path/to/your/index',
)
index_id = 'your logic index str id'
index_client.create_index(index_id, idx_cfg)

Index configuration

IndexCfg has multiple attributes to set the FAISS index type. List of values for index_builder_type attribute:

  • flat,
  • ivf_simple,
  • knnlm, corresponds to IndexIVFPQ,
  • hnswsq, corresponds to IndexHNSWSQ,
  • ivfsq, corresponds to IndexIVFScalarQuantizer,
  • ivf_gpu is a gpu version of IVF.

Alternatively, if index_builder_type is not specified, one can set faiss_factory just like in FAISS API factory call faiss.index_factory(...)

The following attributes defined the way the index is created:

  • train_num - if specified, sets the number of samples are used for the index training.
  • train_ratio - the same as train_num but as a ratio of total data size.

Data sent for indexing will be aggregated in memory until train_num threshold is exceeded. Please refer to the diagram below about the server and client side interactions and steps.

Client side operations

Once the index has been created, one can send batches of numpy arrays coupled with arbitrarily metadata (should be piackable)

index.add_index_data(index_id, vector_chunk, list_of_metadata)

The index training and creation are done asynchronously with the add() operation the index processing may take a lot of time after all the data are sent. In order to check if all server nodes have finished index building, it is recommended to use the following snippet:

while index.get_state(self.index_id) != IndexState.TRAINED:
    time.sleep(some_time)

Once the index is ready, one can query it:

scores, meta = index.search(query, topk=10, index_id, return_embeddings=False)

query is a query vector batch as a numpy array. return_embeddings enables to return the search result vectors in addition to metadata. If it is set to true, the result tuple will return vectors as the 3-rd element.

Loading Data

The following two commands load a medium sized mmap into distributed-faiss in about 1 minute:

First launch 64 servers in the background

python scripts/server_launcher.py \
    --log-dir /logs/distr-faiss/ \
    --discovery-config /tmp/discover_config.txt \
    --save-dir $HOME/dfaiss_data \
    --num-servers 64 \
    --num-servers-per-node 32 \
    --timeout-min 4320 \
    --mem-gb 400 \
    --base-port 12033 \
    --partition dev &

Once you receive your allocation, load in the data with

python scripts/load_data.py \
    --discover /tmp/discover_config.txt \
    --mmap $HOME/dfaiss_data/random_1000000000_768_fp16.mmap \
    --mmap-size 1000000000 \
    --dimension 768 \
    --dstore-fp16 \
    --cfg scripts/idx_cfg.json \
    --dstore-fp16

modify scripts/load_data.py to load other data formats.

Reference

Reference to cite when using distributed-faiss in a research paper:

@article{DBLP:journals/corr/abs-2112-09924,
  author    = {Aleksandra Piktus and
               Fabio Petroni and
               Vladimir Karpukhin and
               Dmytro Okhonko and
               Samuel Broscheit and
               Gautier Izacard and
               Patrick Lewis and
               Barlas Oguz and
               Edouard Grave and
               Wen{-}tau Yih and
               Sebastian Riedel},
  title     = {The Web Is Your Oyster - Knowledge-Intensive {NLP} against a Very
               Large Web Corpus},
  journal   = {CoRR},
  volume    = {abs/2112.09924},
  year      = {2021},
  url       = {https://arxiv.org/abs/2112.09924},
  eprinttype = {arXiv},
  eprint    = {2112.09924},
  timestamp = {Tue, 04 Jan 2022 15:59:27 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2112-09924.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

You can access the paper here.

License

distributed-faiss is released under the CC-BY-NC 4.0 license. See the LICENSE file for details.

Owner
Meta Research
Meta Research
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Matthew Colbrook 1 Apr 08, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022