A library for end-to-end learning of embedding index and retrieval model

Related tags

Text Data & NLPpoeem
Overview

Poeem

Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertising and search systems. Apart from other libraries, such as Faiss and ScaNN, which build embedding indexes with already learned embeddings, Poeem jointly learn the embedding index together with retrieval model in order to avoid the quantization distortion. Consequentially, Poeem is proved to outperform the previous methods significantly, as shown in our SIGIR paper. Poeem is written based on Tensorflow GPU version 1.15, and some of the core functionalities are written in C++, as custom TensorFlow ops. It is developed by JD.com Search.

For more details, check out our SIGIR 2021 paper here.

Content

System Requirements

  • We only support Linux systems for now, e.g., CentOS and Ubuntu. Windows users might need to build the library from source.
  • Python 3.6 installation.
  • TensorFlow GPU version 1.15 (pip install tensorflow-gpu==1.15.0). Other TensorFlow versions are not tested.
  • CUDA toolkit 10.1, required by TensorFlow GPU 1.15.

Quick Start

Poeem aims at an almost drop-in utility for training and serving large scale embedding retrieval models. We try to make it easy to use as much as we can.

Install

Install poeem for most Linux system can be done easily with pip.

$ pip install poeem

Quick usage

As an extreme simple example, you can use Poeem simply by the following commands

>>> import tensorflow as tf, poeem
>>> hparams = poeem.embedding.PoeemHparam()
>>> poeem_indexing_layer = poeem.embedding.PoeemEmbed(64, hparams)
>>> emb = tf.random.normal([100, 64])  # original embedding before indexing layer
>>> emb_quantized, coarse_code, code, regularizer = poeem_indexing_layer.forward(emb)
>>> emb = emb - tf.stop_gradient(emb - emb_quantized)   # use this embedding for downstream computation
>>> with tf.Session() as sess:
>>>   sess.run(tf.global_variables_initializer())
>>>   sess.run(emb)

Tutorial

The above simple example, as a quick start, does not show how to build embedding index and how to serve it online. Experienced or advanced users who are interested in applying it in real-world or industrial system, can further read the tutorials.

Authors

The main authors of Poeem are:

  • Han Zhang wrote most Python models and conducted most of experiments.
  • Hongwei Shen wrote most of the C++ TensorFlow ops and managed the pip released package.
  • Yunjiang Jiang developed the rotation algorithm and wrote the related code.
  • Wen-Yun Yang initiated the Poeem project, wrote some of TensorFlow ops, integrated different parts and wrote the tutorials.

How to Cite

Reference to cite if you use Poeem in a research paper or in a real-world system

  @inproceeding{poeem_sigir21,
    title={Joint Learning of Deep Retrieval Model and Product Quantization based Embedding Index},
    author={Han Zhang, Hongwei Shen, Yiming Qiu, Yunjiang Jiang, Songlin Wang, Sulong Xu, Yun Xiao, Bo Long and Wen-Yun Yang},
    booktitle={The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
    pages={},
    year={2021}
}

License

MIT licensed

DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022