A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Overview

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge

This is a platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Change Log

  • 2022-05-16: improved engine backend (Linux) with better stability (v1.0)
    • Check out Supported Platforms for download links.
    • Make sure to update to the latest version of the engine if you would like to use depth map or enemy state features.
  • 2022-05-18: updated engine backend for Windows and MacOS (v1.0)

Competition Overview

With a focus on learning intelligent agents in open-world games, this year we are hosting a new contest called Wilderness Scavenger. In this new game, which features a Battle Royale-style 3D open-world gameplay experience and a random PCG-based world generation, participants must learn agents that can perform subtasks common to FPS games, such as navigation, scouting, and skirmishing. To win the competition, agents must have strong perception of complex 3D environments and then learn to exploit various environmental structures (such as terrain, buildings, and plants) by developing flexible strategies to gain advantages over other competitors. Despite the difficulty of this goal, we hope that this new competition can serve as a cornerstone of research in AI-based gaming for open-world games.

Features

  • A light-weight 3D open-world FPS game developed with Unity3D game engine
  • Rendering-off game acceleration for fast training and evaluation
  • Large open world environment providing high freedom of agent behaviors
  • Highly customizable game configuration with random supply distribution and dynamic refresh
  • PCG-based map generation with randomly spawned buildings, plants and obstacles (100 training maps)
  • Interactive replay tool for game record visualization

Basic Structures

We developed this repository to provide a training and evaluation platform for the researchers interested in open-world FPS game AI. For getting started quickly, a typical workspace structure when using this repository can be summarized as follows:

.
├── examples  # providing starter code examples and training baselines
│   ├── envs/...
│   ├── basic.py
│   ├── basic_track1_navigation.py
│   ├── basic_track2_supply_gather.py
│   ├── basic_track3_supply_battle.py
│   ├── baseline_track1_navigation.py
│   ├── baseline_track2_supply_gather.py
│   └── baseline_track3_supply_battle.py
├── inspirai_fps  # the game play API source code
│   ├── lib/...
│   ├── __init__.py
│   ├── gamecore.py
│   ├── raycast_manager.py
│   ├── simple_command_pb2.py
│   ├── simple_command_pb2_grpc.py
│   └── utils.py
└── fps_linux  # the engine backend (Linux)
    ├── UnityPlayer.so
    ├── fps.x86_64
    ├── fps_Data/...
    └── logs/...
  • fps_linux (requires to be manually downloaded and unzipped to your working directory): the (Linux) engine backend extracted from our game development project, containing all the game related assets, binaries and source codes.
  • inspirai_fps: the python gameplay API for agent training and testing, providing the core Game class and other useful tool classes and functions.
  • examples: we provide basic starter codes for each game mode targeting each track of the challenge, and we also give out our implementation of some baseline solutions based on ray.rllib reinforcement learning framework.

Supported Platforms

We support the multiple platforms with different engine backends, including:

Installation (from source)

To use the game play API, you need to first install the package inspirai_fps by following the commands below:

git clone https://github.com/inspirai/wilderness-scavenger
cd wilderness-scavenger
pip install .

We recommend installing this package with python 3.8 (which is our development environment), so you may first create a virtual env using conda and finish installation:

$ conda create -n WildScav python=3.8
$ conda activate WildScav
(WildScav) $ pip install .

Installation (from PyPI)

Note: this may not be maintained in time. We strongly recommend using the installation method above

Alternatively, you can install the package from PyPI directly. But note that this will only install the gameplay API inspirai_fps, not the backend engine. So you still need to manually download the correct engine backend from the Supported Platfroms section.

pip install inspirai-fps

Loading Engine Backend

To successfully run the game, you need to make sure the game engine backend for your platform is downloaded and set the engine_dir parameter of the Game init function correctly. For example, here is a code snippet in the script example/basic.py:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--engine-dir", type=str, default="../fps_linux")
...
game = Game(..., engine_dir=args.engine_dir, ...)

Loading Map Data

To get access to some features like realtime depth map computation or randomized player spawning, you need to load the map data and load them into the Game. After this, once you turn on the depth map rendering, the game server will automatically compute a depth map viewing from the player's first person perspective at each time step.

  1. Download map data from Google Drive or Feishu and decompress the downloaded file to your preferred directory (e.g., <WORKDIR>/map_data).
  2. Set map_dir parameter of the Game initializer accordingly
  3. Set the map_id as you like
  4. Turn on the function of depth map computation
  5. Turn on random start location to spawn agents at random places

Read the following code snippet in the script examples/basic.py as an example:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--map-id", type=int, default=1)
parser.add_argument("--use-depth-map", action="store_true")
parser.add_argument("--random-start-location", action="store_true")
parser.add_argument("--map-dir", type=str, default="../map_data")
...
game = Game(map_dir=args.map_dir, ...)
game.set_map_id(args.map_id)  # this will load the valid locations of the specified map
...
if args.use_depth_map:
    game.turn_on_depth_map()
    game.set_depth_map_size(380, 220, 200)  # width (pixels), height (pixels), depth_limit (meters)
...
if args.random_start_location:
    for agent_id in range(args.num_agents):
        game.random_start_location(agent_id, indoor=False)  # this will randomly spawn the player at a valid outdoor location, or indoor location if indoor is True
...
game.new_episode()  # start a new episode, this will load the mesh of the specified map

Gameplay Visualization

We have also developed a replay visualization tool based on the Unity3D game engine. It is similar to the spectator mode common in multiplayer FPS games, which allows users to interactively follow the gameplay. Users can view an agent's action from different perspectives and also switch between multiple agents or different viewing modes (e.g., first person, third person, free) to see the entire game in a more immersive way. Participants can download the tool for their specific platforms here:

To use this tool, follow the instruction below:

  • Decompress the downloaded file to anywhere you prefer.
  • Turn on recording function with game.turn_on_record(). One record file will be saved at the end of each episode.

Find the replay files under the engine directory according to your platform:

  • Linux: <engine_dir>/fps_Data/StreamingAssets/Replay
  • Windows: <engine_dir>\FPSGameUnity_Data\StreamingAssets\Replay
  • MacOS: <engine_dir>/Contents/Resources/Data/StreamingAssets/Replay

Copy replay files you want to the replay tool directory according to your platform and start the replay tool.

For Windows users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/FPSGameUnity_Data/StreamingAssets/Replay
  • Run FPSGameUnity.exe to start the application.

For MacOS users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/Contents/Resources/Data/StreamingAssets/Replay
  • Run fps.app to start the application.

In the replay tool, you can:

  • Select the record you want to watch from the drop-down menu and click PLAY to start playing the record.
  • During the replay, users can make the following operations
    • Press Tab: pause or resume
    • Press E: switch observation mode (between first person, third person, free)
    • Press Q: switch between multiple agents
    • Press ECS: stop replay and return to the main menu
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022