A port of muP to JAX/Haiku

Overview

MUP for Haiku

This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to suggestions on improving the usability.

Installation

pip install haiku-mup

Learning rate demo

These plots show the evolution of the optimal learning rate for a 3-hidden-layer MLP on MNIST, trained for 10 epochs (5 trials per lr/width combination).

With standard parameterization, the learning rate optimum (w.r.t. training loss) continues changing as the width increases, but μP keeps it approximately fixed:

Here's the same kind of plot for 3 layer transformers on the Penn Treebank, this time showing Validation loss instead of training loss, scaling both the number of heads and the embedding dimension simultaneously:

Note that the optima have the same value for n_embd=80. That's because the other hyperparameters were tuned using an SP model with that width, so this shouldn't be biased in favor of μP.

Usage

from functools import partial

import jax
import jax.numpy as jnp
import haiku as hk
from optax import adam, chain

from haiku_mup import apply_mup, Mup, Readout

class MyModel(hk.Module):
    def __init__(self, width, n_classes=10):
        super().__init__(name='model')
        self.width = width
        self.n_classes = n_classes

    def __call__(self, x):
        x = hk.Linear(self.width)(x)
        x = jax.nn.relu(x)
        return Readout(2)(x) # 1. Replace output layer with Readout layer

def fn(x, width=100):
    with apply_mup(): # 2. Modify parameter creation with apply_mup()
        return MyModel(width)(x)

mup = Mup()

init_input = jnp.zeros(123)
base_model = hk.transform(partial(fn, width=1))

with mup.init_base(): # 3. Use this context manager when initializing the base model
    hk.init(fn, jax.random.PRNGKey(0), init_input) 

model = hk.transform(fn)

with mup.init_target(): # 4. Use this context manager when initializng the target model
    params = model.init(jax.random.PRNGKey(0), init_input)

model = mup.wrap_model(model) # 5. Modify your model with Mup

optimizer = optax.adam(3e-4)
optimizer = mup.wrap_optimizer(optimizer, adam=True) # 6. Use wrap_optimizer to get layer specific learning rates

# Now the model can be trained as normal

Summary

  1. Replace output layers with Readout layers
  2. Modify parameter creation with the apply_mup() context manager
  3. Initialize a base model inside a Mup.init_base() context
  4. Initialize the target model inside a Mup.init_target() context
  5. Wrap the model with Mup.wrap_model
  6. Wrap optimizer with Mup.wrap_optimizer

Shared Input/Output embeddings

If you want to use the input embedding matrix as the output layer's weight matrix make the following two replacements:

# old: embedding_layer = hk.Embed(*args, **kwargs)
# new:
embedding_layer = haiku_mup.SharedEmbed(*args, **kwargs)
input_embeds = embedding_layer(x)

#old: output = hk.Linear(n_classes)(x)
# new:
output = haiku_mup.SharedReadout()(embedding_layer.get_weights(), x) 
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022