A quantum game modeling of pandemic (QHack 2022)

Overview

Abstract

In the regime of a global pandemic, leaders around the world need to consider various possibilities and take conscious actions to protect their citizens from the infectious virus. In the quantum world that we model in this game, every possible situation exists as a superposed state. Nothing is decisive at all. You, as the leader of this quantum city, need to suppress the possibility, or amplitude of states representing bad situations. Lastly, the mandatory PCR test for every citizen is waiting you---it 'measures' the city and will show whether your policies rescued the city or not. Predict, act, and measure!

The Game

Objectives

  • Obtain negative result for everyone at the last PCR test.

Contents

  • Mode
    In this game, there are two modes: Pure Quandemic and Mixed Quandemic. From the former one, the state of the citizens is always pure state. All the actions are unitary. On the other hand, when using the latter one, the state of the citizens can be mixed state. Considering a density matrix will be a good strategy. Most of actions are unitary, however, swapping two citiznes lead to non-unitary evolution. More details are described at 'Regular Action: Move Citizens (Swap)'. Input : write 1(0) if you want to play 'Mixed Quandemic'('Pure Quandemic'). ex) 1

  • Level
    The level indicates the initial number of infected people. However, indices of infected people are selected randomly. Input : write the number of level. ex) 3

  • Citizens
    A quantum circuit with N by M qubits represents a city that N*M citizens live with a deadly virus. 0's and 1's appearing on the computational basis of this system corresponds to healthy and infected states, respectively. Since the people live in a quantum world, the city stays in a superposition of possible infection states!

  • Regular Action: PCR Testing (Single Person)
    A PCR test corresponds to measurement on a specific qubit, or a citizen of this city. Not only obtains a decisive result about the citizen's infection status, the test destroys possibility of the city to be in states which counter the test result. In quantum-like words, the measurement projects previous state into a subspace contains the measured result. Input : write the index of person you want to inspect. ex) 4

  • Special Action: PCR Testing (Total Inspection)
    For sake of the player, one can measure states of all qubits at once for only one time during the game. It will remove superposition of the city's state, but the state will quickly branch and involve possibilities as time goes on. Input : write 1(0) if you want(do not want) to do the action. ex) 1

  • Regular Action: Move Citizens (Swap)
    In each turn, player should choose pairs of citizens to swap position. However, when a player use 'Mixed Quandemic' mode, they might additionally catch the virus since the swapped citizens can be exposed to the contaminated environment while swapping each other. The newly possible infected state is involved to the game as superposition. Simply, a quantum SWAP gate and a Kraus operator(only for 'Mixed Quandemic' mode) which puts 0 to 1 at a fixed possibility successively applied for each pair of citizens that the player selected. Players are allowed to swap 'neighboring' citizens only. Input : write the pairs of people's indices for inspection. If you want to inspect (0,1) and (3,4) --> ex) 0,1 3,4

  • Regular Action: Send Hospital
    There are two hospitals in this city placed at the certain area.

    • The 'H' hospital
      The 'H' hospital is placed on boundaries of the city. For example, in 3x3 city, 'H' hospital is placed at position 0, 1, 2, 3, 5, 6, 7, 8. The 'H' hospital works by applying Hadamard gate if player selects its position. Be careful that it might increase probability of infection if it is used in a wrong way!

    • The Pauli's X hospital
      The Pauli's X hospital is placed at the center of the city. It acts to the citizen at the center by applying X gate. So the hospital will cure a citizen if one is infected, but it will infect a healthy one at the same time! This hospital has the perfect medicine, but it is located at the center of the city.. It is really easy to get infected via passing through the central city.

Input : write the indices of people who wants to go to the hospital. ex) 0 1 3

In each turn, the player should select which citizens to send hospital. It is only possible to send citizens that are placed on the hostpial area.

  • The last, mandatory PCR test
    This test decides whether your critical choices during the pandemic were successful or not. This very final operation measures all qubits of the system as the total survey. Even if a single 1 exists in your final state, it will move, copy itself and spread throughout your city again. No way! The game's objective is to obtain the result |00...00> and to free your city from the pandemic forever! Input : write 1(0) if you want(do not want) to do the action. ex) 1

Demonstration

Title_Image

We first select pairs of citizen to swap position, indicated as blue edges. Then, select which citizens to send hospital, indicated as light-red boxes. Press 'Next' button to progress to next step. We can either check one person's PCR testing result, or use the total PCR inspection chance (limited to once per game). Execute GUI version of the game by python3 GUI_Quandemics.py.

Captured Scene

  • Example of the 'GUI' version

Title_Image

It is the interim state of the 'GUI' version game. #0 person visited the 'H' hospital. By the way, we had inspected the PCR test for the #2 person, and his/her result was positive.
Owner
Yoonjae Chung
KAIST EE & Physics Undergraduate
Yoonjae Chung
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021