A simple guide to MLOps through ZenML and its various integrations.

Overview

ZenBytes

ZenML Logo

Join our Slack Slack Community and become part of the ZenML family
Give the main ZenML repo a Slack GitHub star to show your love

Sam

ZenBytes is a series of practical lessons about MLOps through ZenML and its various integrations. It is intended for people looking to learn about MLOps generally, and also practitioners specifically looking to learn more about ZenML.

πŸ™ About ZenML

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. Built for data scientists, it has a simple, flexible syntax, is cloud- and tool-agnostic, and has interfaces/abstractions that are catered towards ML workflows. The ZenML repository and Docs has more details.

ZenML is a good tool to learn MLOps because of two reasons:

πŸ”Ή ZenML focuses on being un-opinionated about underlying tooling and infrastructure across the MLOps stack. πŸ”Ή ZenML presents itself as a pipeline tool, making all development in ZenML data-centric rather than model-centric.

🧱 Structure of Lessons

The lessons are structured in Chapters. Each chapter is a notebook that walks through and explains various concepts:

  • Chapter 0: Basics
  • Chapter 1: Building a ML(Ops) pipeline
  • Chapter 2: Transitioning across stacks
  • Coming soon: More chapters

πŸ’» System Requirements

In order to run these lessons, you need to have some packages installed on your machine. Note you only need these for some parts, and you might get away with only Python and pip install requirements.txt for some parts of the codebase, but we recommend installing all these:

Currently, this will only run on UNIX systems.

package MacOS installation Linux installation
docker Docker Desktop for Mac Docker Engine for Linux
kubectl kubectl for mac kubectl for linux
k3d Brew Installation of k3d k3d installation linux

You might also need to install Anaconda to get the MLflow deployment to work.

🐍 Python Requirements

Once you've got the system requirements figured out, let's jump into the Python packages you need. Within the Python environment of your choice, run:

git clone https://github.com/zenml-io/zenbytes
pip install -r requirements.txt

If you are running the run.py script, you will also need to install some integrations using zenml:

zenml integration install sklearn -f
zenml integration install dash -f
zenml integration install evidently -f
zenml integration install mlflow -f
zenml integration install kubeflow -f
zenml integration install seldon -f

πŸ““ Diving into the code

We're ready to go now. You can go through the notebook step-by-step guide:

jupyter notebook

🏁 Cleaning up when you're done

Once you are done running all notebooks you might want to stop all running processes. For this, run the following command. (This will tear down your k3d cluster and the local docker registry.)

zenml stack set aws_kubeflow_stack
zenml stack down -f
zenml stack set local_kubeflow_stack
zenml stack down -f

❓ FAQ

  1. MacOS When starting the container registry for Kubeflow, I get an error about port 5000 not being available. OSError: [Errno 48] Address already in use

Solution: In order for Kubeflow to run, the docker container registry currently needs to be at port 5000. MacOS, however, uses port 5000 for the Airplay receiver. Here is a guide on how to fix this Freeing up port 5000.

Owner
ZenML
Building production MLOps tooling.
ZenML
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
Machine Learning Techniques using python.

πŸ‘‹ Hi, I’m Fahad from TEXAS TECH. πŸ‘€ I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm.

Naive-Bayes Spam Classificator Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm. Main goal is to code a

Viktoria Maksymiuk 1 Jun 27, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
ο»ΏGreykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

ζž—ζ™― 15 Nov 30, 2022
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022