A symbolic-model-guided fuzzer for TLS

Overview

tlspuffin

Logo with Penguin

TLS Protocol Under FuzzINg
A symbolic-model-guided fuzzer for TLS

Disclaimer: The term "symbolic-model-guided" should not be confused with symbolic execution or concolic fuzzing.

Description

Fuzzing implementations of cryptographic protocols is challenging. In contrast to traditional fuzzing of file formats, cryptographic protocols require a specific flow of cryptographic and mutually dependent messages to reach deep protocol states. The specification of the TLS protocol describes sound flows of messages and cryptographic operations.

Although the specification has been formally verified multiple times with significant results, a gap has emerged from the fact that implementations of the same protocol have not undergone the same logical analysis. Because the development of cryptographic protocols is error-prone, multiple security vulnerabilities have already been discovered in implementations in TLS which are not present in its specification.

Inspired by symbolic protocol verification, we present a reference implementation of a fuzzer named tlspuffin which employs a concrete semantic to execute TLS 1.2 and 1.3 symbolic traces. In fact attacks which mix \TLS versions are in scope of this implementation. This method allows us to utilize a genetic fuzzing algorithm to fuzz protocol flows, which is described by the following three stages.

  • By mutating traces we can deviate from the specification to test logical flaws.
  • Selection of interesting protocol flows advance the fuzzing procedure.
  • A security violation oracle supervises executions for the absence of vulnerabilities.

The novel approach allows rediscovering known vulnerabilities, which are out-of-scope for classical bit-level fuzzers. This proves that it is capable of reaching critical protocol states. In contrast to the promising methodology no new vulnerabilities were found by tlspuffin. This can can be explained by the fact that the implementation effort of TLS protocol primitives and extensions is high and not all features of the specification have been implemented. Nonetheless, the innovating approach is promising in terms of quickly reaching high edge coverage, expressiveness of executable protocol traces and stable and extensible implementation.

Features

  • Uses the LibAFL fuzzing framework
  • Fuzzer which is inspired by the Dolev-Yao symbolic model used in protocol verification
  • Domain specific mutators for Protocol Fuzzing!
  • Supported Libraries Under Test: OpenSSL 1.0.1f, 1.0.2u, 1.1.1k and LibreSSL 3.3.3
  • Reproducible for each LUT. We use Git submodules to link to forks this are in the tlspuffin organisation
  • 70% Test Coverage
  • Writtin in Rust!

Building

Now, to build the project:

git clone [email protected]/tlspuffin/tlspuffin
git submodule update --init --recursive
cargo build

Running

Fuzz using three clients:

cargo run --bin tlspuffin -- --cores 0-3

Note: After switching the Library Under Test or its version do a clean rebuild (cargo clean). For example when switching from OpenSSL 1.0.1 to 1.1.1.

Testing

cargo test

Command-line Interface

The syntax for the command-line of is:

      tlspuffin [⟨options] [⟨sub-commands⟩]

Global Options

Before we explain each sub-command, we first go over the options in the following.

  • -c, --cores ⟨spec⟩

    This option specifies on which cores the fuzzer should assign its worker processes. It can either be specified as a list by using commas "0,1,2,7" or as a range "0-7". By default, it runs just on core 0.

  • -i, --max-iters ⟨i⟩

    This option allows to bound the amount of iterations the fuzzer does. If omitted, then infinite iterations are done.

  • -p, --port ⟨n⟩

    As specified in [sec:design-multiprocessing] the initial communication between the fuzzer broker and workers happens over TCP/IP. Therefore, the broker requires a port allocation. The default port is 1337.

  • -s, --seed ⟨n⟩

    Defines an initial seed for the prng used for mutations. Note that this does not make the fuzzing deterministic, because of randomness introduced by the multiprocessing (see [sec:design-multiprocessing]).

Sub-commands

Now we will go over the sub-commands execute, plot, experiment, and seed.

  • execute ⟨input⟩

    This sub-command executes a single trace persisted in a file. The path to the file is provided by the ⟨input⟩ argument.

  • plot ⟨input⟩ ⟨format⟩ ⟨output_prefix⟩

    This sub-command plots the trace stored at ⟨input⟩ in the format specified by ⟨format⟩. The created graphics are stored at a path provided by ⟨output_prefix⟩. The option --multiple can be provided to create for each step in the trace a separate file. If the option --tree is given, then only a single graphic which contains all steps is produced.

  • experiment

    This sub-command initiates an experiment. Experiments are stored in a directory named experiments/ in the current working directory. An experiment consists of a directory which contains . The title and description of the experiment can be specified with --title ⟨t⟩ and --description ⟨d⟩ respectively. Both strings are persisted in the metadata of the experiment, together with the current commit hash of , the version and the current date and time.

  • seed

    This sub-command serializes the default seed corpus in a directory named corpus/ in the current working directory. The default corpus is defined in the source code of using the trace dsl.

Rust Setup

Install rustup.

The toolchain will be automatically downloaded when building this project. See ./rust-toolchain.toml for more details about the toolchain.

Make sure that you have the clang compiler installed. Optionally, also install llvm to have additional tools like sancov available. Also make sure that you have the usual tools for building it like make, gcc etc. installed. They may be needed to build OpenSSL.

Advanced Features

Running with ASAN

ASAN_OPTIONS=abort_on_error=1 \
    cargo run --bin tlspuffin --features asan -- --cores 0-3

It is important to enable abort_on_error, else the fuzzer workers fail to restart on crashes.

Generate Corpus Seeds

cargo run --bin tlspuffin -- seed

Plot Symbolic Traces

To plot SVGs do the following:

cargo run --bin tlspuffin -- plot corpus/seed_client_attacker12.trace svg ./plots/seed_client_attacker12

Note: This requires that the dot binary is in on your path. Note: The utility tools/plot-corpus.sh plots a whole directory

Execute a Symbolic Trace (with ASAN)

To analyze crashes you can also execute a trace which crashes the testing harness using ASAN:

cargo run --bin tlspuffin -- execute test.trace

To do the same with ASAN enabled:

ASAN_OPTIONS=detect_leaks=0 \
      cargo run --bin tlspuffin --features asan -- execute test.trace

Crash Deduplication

Creates log files for each crash and parses ASAN crashes to group crashes together.

tools/analyze-crashes.sh

Benchmarking

There is a benchmark which compares the execution of the dynamic functions to directly executing them in benchmark.rs. You can run them using:

cargo bench
xdg-open target/criterion/report/index.html

Documentation

This generates the documentation for this crate and opens the browser. This also includes the documentation of every dependency like LibAFL or rustls.

cargo doc --open

You can also view the up-to-date documentation here.

You might also like...
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

Data and Code for ACL 2021 Paper
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Comments
  • Support for WolfSSL through a new rust-wolfssl crate

    Support for WolfSSL through a new rust-wolfssl crate

    I tried another approach as I struggled with #136 to debug some SEGFAULT.

    Here the approach is to clone rust-openssl, minimize the exposed interface while exposing what we need for wolfssl_binding.rs, then plug in wolfssl-sys instead of openssl-sys.

    opened by LCBH 3
  • Rediscover wolfSSL vulnerabilities

    Rediscover wolfSSL vulnerabilities

    • CVE-2020-12457 in <4.5.0 https://nvd.nist.gov/vuln/detail/CVE-2020-12457 (DDOS against server, needs change_cipher_spec (CCS) message mutations)
    • CVE 2020-24613 in <4.5.0 https://nvd.nist.gov/vuln/detail/CVE-2020-24613 in < 4.5.0, TLS 1.3 server auth. bypass
    • CVE-2021-3336 in < 4.7.0 https://nvd.nist.gov/vuln/detail/CVE-2021-3336, TLS 1.3 server auth. bypass
    • CVE 2022-25638 in < 5.2.0 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-25638, TLS 1.3 server auth. bypass
    • CVE-2022-25640 in <5.2.0 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-25640 (attack on client authentication, needs client authentication through cert.)
    opened by maxammann 1
Releases(evaluation)
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
Özlem Taşkın 0 Feb 23, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022