A toolkit for Lagrangian-based constrained optimization in Pytorch

Overview

Cooper

LICENSE DOCS Build and Test Codecov

About

Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of constrained optimization problems in machine learning.

Cooper is (almost!) seamlessly integrated with Pytorch and preserves the usual loss -> backward -> step workflow. If you are already familiar with Pytorch, using Cooper will be a breeze! 🙂

Cooper was born out of the need to handle constrained optimization problems for which the loss or constraints are not necessarily "nicely behaved" or "theoretically tractable", e.g. when no (efficient) projection or proximal are available. Although assumptions of this kind have enabled the development of great Pytorch-based libraries such as CHOP and GeoTorch, they are seldom satisfied in the context of many modern machine learning problems.

Many of the structural design ideas behind Cooper are heavily inspired by the TensorFlow Constrained Optimization (TFCO) library. We highly recommend TFCO for TensorFlow-based projects and will continue to integrate more of TFCO's features in future releases.

⚠️ This library is under active development. Future API changes might break backward compatibility. ⚠️

Getting Started

Here we consider a simple convex optimization problem to illustrate how to use Cooper. This example is inspired by this StackExchange question:

I am trying to solve the following problem using Pytorch: given a 6-sided die whose average roll is known to be 4.5, what is the maximum entropy distribution for the faces?

import torch
import cooper

class MaximumEntropy(cooper.ConstrainedMinimizationProblem):
    def __init__(self, mean_constraint):
        self.mean_constraint = mean_constraint
        super().__init__(is_constrained=True)

    def closure(self, probs):
        # Verify domain of definition of the functions
        assert torch.all(probs >= 0)

        # Negative signed removed since we want to *maximize* the entropy
        entropy = torch.sum(probs * torch.log(probs))

        # Entries of p >= 0 (equiv. -p <= 0)
        ineq_defect = -probs

        # Equality constraints for proper normalization and mean constraint
        mean = torch.sum(torch.tensor(range(1, len(probs) + 1)) * probs)
        eq_defect = torch.stack([torch.sum(probs) - 1, mean - self.mean_constraint])

        return cooper.CMPState(loss=entropy, eq_defect=eq_defect, ineq_defect=ineq_defect)

# Define the problem and formulation
cmp = MaximumEntropy(mean_constraint=4.5)
formulation = cooper.LagrangianFormulation(cmp)

# Define the primal parameters and optimizer
probs = torch.nn.Parameter(torch.rand(6)) # Use a 6-sided die
primal_optimizer = cooper.optim.ExtraSGD([probs], lr=3e-2, momentum=0.7)

# Define the dual optimizer. Note that this optimizer has NOT been fully instantiated
# yet. Cooper takes care of this, once it has initialized the formulation state.
dual_optimizer = cooper.optim.partial_optimizer(cooper.optim.ExtraSGD, lr=9e-3, momentum=0.7)

# Wrap the formulation and both optimizers inside a ConstrainedOptimizer
coop = cooper.ConstrainedOptimizer(formulation, primal_optimizer, dual_optimizer)

# Here is the actual training loop.
# The steps follow closely the `loss -> backward -> step` Pytorch workflow.
for iter_num in range(5000):
    coop.zero_grad()
    lagrangian = formulation.composite_objective(cmp.closure, probs)
    formulation.custom_backward(lagrangian)
    coop.step(cmp.closure, probs)

Installation

Basic Installation

pip install git+https://github.com/cooper-org/cooper.git

Development Installation

First, clone the repository, navigate to the Cooper root directory and install the package in development mode by running:

Setting Command Notes
Development pip install --editable ".[dev, tests]" Editable mode. Matches test environment.
Docs pip install --editable ".[docs]" Used to re-generate the documentation.
Tutorials pip install --editable ".[examples]" Install dependencies for running examples
No Tests pip install --editable . Editable mode, without tests.

Package structure

  • cooper - base package
    • problem - abstract class for representing ConstrainedMinimizationProblems (CMPs)
    • constrained_optimizer - torch.optim.Optimizer-like class for handling CMPs
    • lagrangian_formulation - Lagrangian formulation of a CMP
    • multipliers - utility class for Lagrange multipliers
    • optim - aliases for Pytorch optimizers and extra-gradient versions of SGD and Adam
  • tests - unit tests for cooper components
  • tutorials - source code for examples contained in the tutorial gallery

Contributions

Please read our CONTRIBUTING guide prior to submitting a pull request. We use black for formatting, isort for import sorting, flake8 for linting, and mypy for type checking.

We test all pull requests. We rely on this for reviews, so please make sure any new code is tested. Tests for cooper go in the tests folder in the root of the repository.

License

Cooper is distributed under an MIT license, as found in the LICENSE file.

Acknowledgements

Cooper supports the use of extra-gradient style optimizers for solving the min-max Lagrangian problem. We include the implementations of the extra-gradient version of SGD and Adam by Hugo Berard.

We thank Manuel del Verme for insightful discussions during the early stages of this library.

This README follows closely the style of the NeuralCompression repository.

How to cite this work?

If you find Cooper useful in your research, please consider citing it using the snippet below:

@misc{gallegoPosada2022cooper,
    author={Gallego-Posada, Jose and Ramirez, Juan},
    title={Cooper: a toolkit for Lagrangian-based constrained optimization},
    howpublished={\url{https://github.com/cooper-org/cooper}},
    year={2022}
}
571 Dec 25, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022