A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

Overview

sam4onnx

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Specify an arbitrary OP name and Constant type INPUT name or an arbitrary OP name and Attribute name, and pass the modified constants to rewrite the parameters of the relevant OP.
  • Two types of input are accepted: .onnx file input and onnx.ModelProto format objects.
  • To design the operation to be simple, only a single OP can be specified.
  • Attributes and constants are forcibly rewritten, so the integrity of the entire graph is not checked in detail.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sam4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sam4onnx:latest

### docker build
$ docker build -t pinto0309/sam4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sam4onnx:latest
$ cd /workdir

2. CLI Usage

$ sam4onnx -h

usage:
    sam4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    [--op_name OP_NAME]
    [--attributes NAME DTYPE VALUE]
    [--input_constants NAME DTYPE VALUE]
    [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  --op_name OP_NAME
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        e.g. --op_name aaa

  --attributes NAME DTYPE VALUE
        Parameter to change the attribute of the OP specified in --op_name.
        If the OP specified in --op_name has no attributes,
        it is ignored. attributes can be specified multiple times.
        --attributes name dtype value dtype is one of
        "float32" or "float64" or "int32" or "int64" or "str".
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --attributes alpha float32 [[1.0]]
        --attributes beta float32 [1.0]
        --attributes transA int64 0
        --attributes transB int64 0

  --input_constants NAME DTYPE VALUE
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        input_constants can be specified multiple times.
        --input_constants constant_name numpy.dtype value

        e.g.
        --input_constants constant_name1 int64 0
        --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sam4onnx import modify
>>> help(modify)
Help on function modify in module sam4onnx.onnx_attr_const_modify:

modify(
    input_onnx_file_path: Union[str, NoneType] = '',
    output_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    op_name: Union[str, NoneType] = '',
    attributes: Union[dict, NoneType] = None,
    input_constants: Union[dict, NoneType] = None,
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    op_name: Optional[str]
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        Default: ''
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    attributes: Optional[dict]
        Specify output attributes for the OP to be generated.
        See below for the attributes that can be specified.

        {"attr_name1": numpy.ndarray, "attr_name2": numpy.ndarray, ...}

        e.g. attributes =
            {
                "alpha": np.asarray(1.0, dtype=np.float32),
                "beta": np.asarray(1.0, dtype=np.float32),
                "transA": np.asarray(0, dtype=np.int64),
                "transB": np.asarray(0, dtype=np.int64)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    input_constants: Optional[dict]
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        {"constant_name1": numpy.ndarray, "constant_name2": numpy.ndarray, ...}

        e.g.
        input_constants =
            {
                "constant_name1": np.asarray(0, dtype=np.int64),
                "constant_name2": np.asarray([[1.0,2.0,3.0],[4.0,5.0,6.0]], dtype=np.float32)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    modified_graph: onnx.ModelProto
        Mddified onnx ModelProto

4. CLI Execution

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path input.onnx \
--output_onnx_file_path output.onnx \
--attributes perm int64 [0,1]

5. In-script Execution

from sam4onnx import modify

modified_graph = modify(
    onnx_graph=graph,
    input_constants={"241": np.asarray([1], dtype=np.int64)},
    non_verbose=True,
)

6. Sample

6-1. Transpose - update perm

image

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--attributes perm int64 [0,1]

image

6-2. Mul - update Constant (170) - From: 2, To: 1

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 170 float32 1

image

6-3. Reshape - update Constant (241) - From: [-1], To: [1]

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 241 int64 [1]

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Simple ONNX operation generator. Simple Operation Generator for ONNX.
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Ranger deep learning optimizer rewrite to use newest components
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Releases(1.0.12)
  • 1.0.12(Jan 2, 2023)

    What's Changed

    • Support for models with custom domains by @PINTO0309 in https://github.com/PINTO0309/sam4onnx/pull/2

    New Contributors

    • @PINTO0309 made their first contribution in https://github.com/PINTO0309/sam4onnx/pull/2

    Full Changelog: https://github.com/PINTO0309/sam4onnx/compare/1.0.11...1.0.12

    Source code(tar.gz)
    Source code(zip)
  • 1.0.11(Sep 8, 2022)

    • Add short form parameter
      $ sam4onnx -h
      
      usage:
          sam4onnx [-h]
          -if INPUT_ONNX_FILE_PATH
          -of OUTPUT_ONNX_FILE_PATH
          [-on OP_NAME]
          [-a NAME DTYPE VALUE]
          [-da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]]
          [-ic NAME DTYPE VALUE]
          [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit
      
        -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
          Input onnx file path.
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
          Output onnx file path.
      
        -on OP_NAME, --op_name OP_NAME
          OP name of the attributes to be changed.
          When --attributes is specified, --op_name must always be specified.
          e.g. --op_name aaa
      
        -a ATTRIBUTES ATTRIBUTES ATTRIBUTES, --attributes ATTRIBUTES ATTRIBUTES ATTRIBUTES
          Parameter to change the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. attributes can be specified multiple times.
          --attributes name dtype value dtype is one of
          "float32" or "float64" or "int32" or "int64" or "str".
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --attributes alpha float32 [[1.0]]
          --attributes beta float32 [1.0]
          --attributes transA int64 0
          --attributes transB int64 0
      
        -da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...], --delete_attributes DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]
          Parameter to delete the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. delete_attributes can be specified multiple times.
          --delete_attributes name1 name2 name3
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g. --delete_attributes alpha beta
      
        -ic INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS, --input_constants INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS
          Specifies the name of the constant to be changed.
          If you want to change only the constant,
          you do not need to specify --op_name and --attributes.
          input_constants can be specified multiple times.
          --input_constants constant_name numpy.dtype value
      
          e.g.
          --input_constants constant_name1 int64 0
          --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]
          --input_constants constant_name3 float32 [\'-Infinity\']
      
        -n, --non_verbose
          Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.10(Aug 7, 2022)

  • 1.0.9(Jul 17, 2022)

    • Support for constant rewriting when the same constant is shared. Valid only when op_name is specified. Generates a new constant that is different from the shared constant.

    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

      sam4onnx \
      --input_onnx_file_path yolov7-tiny_test_sim.onnx \
      --output_onnx_file_path yolov7-tiny_test_sim_mod.onnx \
      --op_name Reshape_156 \
      --input_constants onnx::Reshape_391 int64 [1,14400,85]
      
    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] -> Reshape_156 onnx::Reshape_391_mod_3 int64 [1, 14400, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Jun 7, 2022)

  • 1.0.7(May 25, 2022)

  • 1.0.6(May 15, 2022)

  • 1.0.5(May 12, 2022)

  • 1.0.4(May 5, 2022)

  • 1.0.3(May 5, 2022)

    • Support for additional attributes
      • Note that the correct attribute set according to the OP's opset is not checked, so any attribute can be added.
      • The figure below shows the addition of the attribute perm to Reshape, which does not originally exist. image
    Source code(tar.gz)
    Source code(zip)
  • 1.0.2(May 3, 2022)

  • 1.0.1(Apr 16, 2022)

  • 1.0.0(Apr 15, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020