PyTorch implementation of probabilistic deep forecast applied to air quality.

Overview

Probabilistic Deep Forecast

PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting arXiv.

Introduction

In this work, we develop a set of deep probabilistic models for air quality forecasting that quantify both aleatoric and epistemic uncertainties and study how to represent and manipulate their predictive uncertainties. In particular: * We conduct a broad empirical comparison and exploratory assessment of state-of-the-art techniques in deep probabilistic learning applied to air quality forecasting. Through exhaustive experiments, we describe training these models and evaluating their predictive uncertainties using various metrics for regression and classification tasks. * We improve uncertainty estimation using adversarial training to smooth the conditional output distribution locally around training data points. * We apply uncertainty-aware models that exploit the temporal and spatial correlation inherent in air quality data using recurrent and graph neural networks. * We introduce a new state-of-the-art example for air quality forecasting by defining the problem setup and selecting proper input features and models.

drawing
Decision score as a function of normalized aleatoric and epistemic confidence thresholds . See animation video here

Installation

install probabilistic_forecast' locally in “editable” mode ( any changes to the original package would reflect directly in your environment, os you don't have to re-insall the package every time you make some changes):

pip install -e .

Use the configuration file equirements.txt to the install the required packages to run this project.

File Structure

.
├── probabilistic_forecast/
│   ├── bnn.py (class definition for the Bayesian neural networks model)
│   ├── ensemble.py (class definition for the deep ensemble model)
│   ├── gnn_mc.py (class definition for the graph neural network model with MC dropout)
│   ├── lstm_mc.py (class definition for the LSTM model with MC dropout)
│   ├── nn_mc.py (class definition for the standard neural network model with MC droput)
│   ├── nn_standard.py (class definition for the standard neural network model without MC dropout)
│   ├── swag.py (class definition for the SWAG model)
│   └── utils/
│       ├── data_utils.py (utility functions for data loading and pre-processing)
│       ├── gnn_utils.py (utility functions for GNN)
│       ├── plot_utils.py (utility functions for plotting training and evaluation results)
│       ├── swag_utils.py  (utility functions for SWAG)
│       └── torch_utils.py (utility functions for torch dataloader, checking if CUDA is available)
├── dataset/
│   ├── air_quality_measurements.csv (dataset of air quality measurements)
│   ├── street_cleaning.csv  (dataset of air street cleaning records)
│   ├── traffic.csv (dataset of traffic volumes)
│   ├── weather.csv  (dataset of weather observations)
│   └── visualize_data.py  (script to visualize all dataset)
├── main.py (main function with argument parsing to load data, build a model and evaluate (or train))
├── tests/
│   └── confidence_reliability.py (script to evaluate the reliability of confidence estimates of pretrained models)
│   └── epistemic_vs_aleatoric.py (script to show the impact of quantifying both epistemic and aleatoric uncertainties)
├── plots/ (foler containing all evaluation plots)
├── pretrained/ (foler containing pretrained models and training curves plots)
├── evaluate_all_models.sh (bash script for evaluating all models at once)
└── train_all_models.sh (bash script for training all models at once)

Evaluating Pretrained Models

Evaluate a pretrained model, for example:

python main.py --model=SWAG --task=regression --mode=evaluate  --adversarial_training

or evaluate all models:

bash evaluate_all_models.sh
drawing
PM-value regression using Graph Neural Network with MC dropout

Threshold-exceedance prediction

drawing
Threshold-exceedance prediction using Bayesian neural network (BNN)

Confidence Reliability

To evaluate the confidence reliability of the considered probabilistic models, run the following command:

python tests/confidence_reliability.py

It will generate the following plots:

drawing
Confidence reliability of probabilistic models in PM-value regression task in all monitoring stations.
drawing
Confidence reliability of probabilistic models in threshold-exceedance prediction task in all monitoring stations.

Epistemic and aleatoric uncertainties in decision making

To evaluate the impact of quantifying both epistemic and aleatoric uncertainties in decision making, run the following command:

python tests/epistemic_vs_aleatoric.py

It will generate the following plots:

Decision score in a non-probabilistic model
as a function of only aleatoric confidence.
Decision score in a probabilistic model as a function
of both epistemic and aleatoric confidences.
drawing drawing

It will also generate an .vtp file, which can be used to generate a 3D plot with detailed rendering and lighting in ParaView.

Training Models

Train a single model, for example:

python main.py --model=SWAG --task=regression --mode=train --n_epochs=3000 --adversarial_training

or train all models:

bash train_all_models.sh
drawing
Learning curve of training a BNNs model to forecast PM-values. Left: negative log-likelihood loss,
Center: KL loss estimated using MC sampling, Right: learning rate of exponential decay.

Dataset

Run the following command to visualize all data

python dataset/visualize_data.py

It will generate plots in the "dataset folder". For example:

drawing
Air quality level over two years in one representative monitoring station (Elgeseter) in Trondheim, Norway

Attribution

Owner
Abdulmajid Murad
PhD Student, Faculty of Information Technology and Electrical Engineering, NTNU
Abdulmajid Murad
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022